Abstract
Thyroid disorders are most commonly diagnosed using high-resolution Ultrasound (US). Longitudinal nodule tracking is a pivotal diagnostic protocol for monitoring changes in pathological thyroid morphology. This task, however, imposes a substantial cognitive load on clinicians due to the inherent challenge of maintaining a mental 3D reconstruction of the organ. We thus present a framework for automated US image slice localization within a 3D shape representation to ease how such sonographic diagnoses are carried out. Our proposed method learns a common latent embedding space between US image patches and the 3D surface of an individual’s thyroid shape, or a statistical aggregation in the form of a statistical shape model (SSM), via contrastive metric learning. Using cross-modality registration and Procrustes analysis, we leverage features from our model to register US slices to a 3D mesh representation of the thyroid shape. We demonstrate that our multi-modal registration framework can localize images on the 3D surface topology of a patient-specific organ and the mean shape of an SSM. Experimental results indicate slice positions can be predicted within an average of 1.2 mm of the ground-truth slice location on the patient-specific 3D anatomy and 4.6 mm on the SSM, exemplifying its usefulness for slice localization during sonographic acquisitions. Code is publically available: https://github.com/vuenc/slice-to-shape.
L. Bastian, V. Bürgin and H.Y. Kim—Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adams, J., Khan, N., Morris, A., Elhabian, S.: Learning spatiotemporal statistical shape models for non-linear dynamic anatomies. Front. Bioeng. Biotechnol. 11, 1086234 (2023)
Azizi, G., Faust, K., Ogden, L., Been, L., Mayo, M.L., Piper, K., Malchoff, C.: 3-D ultrasound and thyroid cancer diagnosis: a prospective study. Ultrasound Med. Biol. 47(5) (2021)
Banerjee, A., Zacur, E., Choudhury, R.P., Grau, V.: Optimised misalignment correction from cine MR slices using statistical shape model. In: Papież, B.W., Yaqub, M., Jiao, J., Namburete, A.I.L., Noble, J.A. (eds.) MIUA 2021. LNCS, vol. 12722, pp. 201–209. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-80432-9_16
Bastian, L., et al.: S3M: scalable statistical shape modeling through unsupervised correspondences. arXiv preprint arXiv:2304.07515 (2023)
Berendsen, F.F., Van Der Heide, U.A., Langerak, T.R., Kotte, A.N., Pluim, J.P.: Free-form image registration regularized by a statistical shape model: application to organ segmentation in cervical MR. Comput. Vis. Image Underst. 117(9), 1119–1127 (2013)
Chai, H.H., et al.: Successful use of a 5G-based robot-assisted remote ultrasound system in a care center for disabled patients in rural China. Front. Publ. Health 10, 915071 (2022)
Chan, C.S., Edwards, P.J., Hawkes, D.J.: Integration of ultrasound-based registration with statistical shape models for computer-assisted orthopedic surgery. In: Medical Imaging 2003: Image Processing, vol. 5032, pp. 414–424. SPIE (2003)
Cheng, A., Lee, J.W.K., Ngiam, K.Y.: Use of 3D ultrasound to characterise temporal changes in thyroid nodules: an in vitro study. J. Ultrasound (2022)
Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49
Ellingsen, L.M., Chintalapani, G., Taylor, R.H., Prince, J.L.: Robust deformable image registration using prior shape information for atlas to patient registration, 34(1) (2010)
Feng, M., Hu, S., Ang, M.H., Lee, G.H.: 2D3D-matchnet: learning to match keypoints across 2D image and 3D point cloud. In: ICRA 2019 (2019)
Ferrante, E., Paragios, N.: Slice-to-volume medical image registration: a survey. Med. Image Anal. 39, 101–123 (2017)
Fu, Y., Lei, Y., Wang, T., Curran, W.J., Liu, T., Yang, X.: Deep learning in medical image registration: a review. Phys. Med. Biol. 65(20), 20TR01 (2020)
Ghanavati, S., Mousavi, P., Fichtinger, G., Abolmaesumi, P.: Phantom validation for ultrasound to statistical shape model registration of human pelvis. In: Medical Imaging 2011: Visualization, Image-Guided Procedures, and Modeling, vol. 7964, pp. 855–862. SPIE (2011)
Ghanavati, S., Mousavi, P., Fichtinger, G., Foroughi, P., Abolmaesumi, P.: Multi-slice to volume registration of ultrasound data to a statistical atlas of human pelvis. In: Medical Imaging 2010: Visualization, Image-Guided Procedures, and Modeling, vol. 7625, pp. 213–222. SPIE (2010)
Grassi, L., Väänänen, S.P., Isaksson, H.: Statistical shape and appearance models: development towards improved osteoporosis care. Curr. Osteoporos. Rep. 19, 676–687 (2021)
Guerreiro, F., et al.: Evaluation of a multi-atlas CT synthesis approach for MRI-only radiotherapy treatment planning. Physica Medica (2017)
Haugen, B.R., Alexander, E.K., Bible, K.C., Doherty, G.M., Mandel, S.J., et al.: 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 26(1) (2016)
Heimann, T., Meinzer, H.P.: Statistical shape models for 3D medical image segmentation: a review, 13(4), 543–563 (2009)
Hennersperger, C., et al.: Towards MRI-based autonomous robotic US acquisitions: a first feasibility study, 36(2), 538–548 (2017)
Hu, X., Chen, X., Liu, Y., Chen, E.Z., Chen, T., Sun, S.: Deep statistic shape model for myocardium segmentation. arXiv preprint arXiv:2207.10607 (2022)
Krönke, M., Eilers, C., Dimova, D., Köhler, M., Buschner, G., et al.: Tracked 3D ultrasound and deep neural network-based thyroid segmentation reduce interobserver variability in thyroid volumetry. PloS ONE 17(7) (2022)
Lüdke, D., Amiranashvili, T., Ambellan, F., Ezhov, I., Menze, B.H., Zachow, S.: Landmark-free statistical shape modeling via neural flow deformations. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13432, pp. 453–463. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16434-7_44
Markova, V., Ronchetti, M., Wein, W., Zettinig, O., Prevost, R.: Global multi-modal 2D/3D registration via local descriptors learning. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13436, pp. 269–279. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16446-0_26
Moenning, C., Dodgson, N.A.: Fast marching farthest point sampling. Eurographics 2003 - Posters (2003)
Naceri, A., et al.: Tactile robotic telemedicine for safe remote diagnostics in times of corona: system design, feasibility and usability study. IEEE Robot. Autom. Lett. 7(4), 10296–10303 (2022)
Raju, A., Miao, S., Jin, D., Lu, L., Huang, J., Harrison, A.P.: Deep implicit statistical shape models for 3D medical image delineation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 2135–2143 (2022)
Samei, G., Karimi, D., Kesch, C., Salcudean, S.: Automatic segmentation of the prostate on 3D trans-rectal ultrasound images using statistical shape models and convolutional neural networks. arXiv preprint arXiv:2106.09662 (2021)
Schönemann, P.H.: A generalized solution of the orthogonal procrustes problem. Psychometrika 31(1), 1–10 (1966)
Song, X., et al.: Cross-modal attention for MRI and ultrasound volume registration. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12904, pp. 66–75. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87202-1_7
Tang, Z., Chen, K., Pan, M., Wang, M., Song, Z.: An augmentation strategy for medical image processing based on statistical shape model and 3D thin plate spline for deep learning. IEEE Access 7, 133111–133121 (2019)
Uzunova, H., Wilms, M., Forkert, N.D., Handels, H., Ehrhardt, J.: A systematic comparison of generative models for medical images. Int. J. Comput. Assist. Radiol. Surg. 17(7), 1213–1224 (2022)
Yeung, P.H., Aliasi, M., Haak, M., Xie, W., Namburete, A.I.: Adaptive 3D localization of 2D freehand ultrasound brain images. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13434, pp. 207–217. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16440-8_20
Zhang, Y.Q., Yin, H.H., He, T., Guo, L.H., Zhao, C.K., Xu, H.X.: Clinical application of a 5G-based telerobotic ultrasound system for thyroid examination on a rural island: a prospective study. Endocrine 76(3), 620–634 (2022)
Acknowledgements and Disclosure
The thyroid dataset used for all experiments is publicly available. Vincent Bürgin is supported by the DAAD program Konrad Zuse Schools of Excellence in Artificial Intelligence, sponsored by the Federal Ministry of Education and Research. The authors declare no conflicts of interest.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bastian, L. et al. (2023). On the Localization of Ultrasound Image Slices Within Point Distribution Models. In: Wachinger, C., Paniagua, B., Elhabian, S., Li, J., Egger, J. (eds) Shape in Medical Imaging. ShapeMI 2023. Lecture Notes in Computer Science, vol 14350. Springer, Cham. https://doi.org/10.1007/978-3-031-46914-5_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-46914-5_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-46913-8
Online ISBN: 978-3-031-46914-5
eBook Packages: Computer ScienceComputer Science (R0)