On the Localization of Ultrasound Image Slices Within Point Distribution Models | SpringerLink
Skip to main content

On the Localization of Ultrasound Image Slices Within Point Distribution Models

  • Conference paper
  • First Online:
Shape in Medical Imaging (ShapeMI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14350))

Included in the following conference series:

Abstract

Thyroid disorders are most commonly diagnosed using high-resolution Ultrasound (US). Longitudinal nodule tracking is a pivotal diagnostic protocol for monitoring changes in pathological thyroid morphology. This task, however, imposes a substantial cognitive load on clinicians due to the inherent challenge of maintaining a mental 3D reconstruction of the organ. We thus present a framework for automated US image slice localization within a 3D shape representation to ease how such sonographic diagnoses are carried out. Our proposed method learns a common latent embedding space between US image patches and the 3D surface of an individual’s thyroid shape, or a statistical aggregation in the form of a statistical shape model (SSM), via contrastive metric learning. Using cross-modality registration and Procrustes analysis, we leverage features from our model to register US slices to a 3D mesh representation of the thyroid shape. We demonstrate that our multi-modal registration framework can localize images on the 3D surface topology of a patient-specific organ and the mean shape of an SSM. Experimental results indicate slice positions can be predicted within an average of 1.2 mm of the ground-truth slice location on the patient-specific 3D anatomy and 4.6 mm on the SSM, exemplifying its usefulness for slice localization during sonographic acquisitions. Code is publically available: https://github.com/vuenc/slice-to-shape.

L. Bastian, V. Bürgin and H.Y. Kim—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 7549
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 9437
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams, J., Khan, N., Morris, A., Elhabian, S.: Learning spatiotemporal statistical shape models for non-linear dynamic anatomies. Front. Bioeng. Biotechnol. 11, 1086234 (2023)

    Article  Google Scholar 

  2. Azizi, G., Faust, K., Ogden, L., Been, L., Mayo, M.L., Piper, K., Malchoff, C.: 3-D ultrasound and thyroid cancer diagnosis: a prospective study. Ultrasound Med. Biol. 47(5) (2021)

    Google Scholar 

  3. Banerjee, A., Zacur, E., Choudhury, R.P., Grau, V.: Optimised misalignment correction from cine MR slices using statistical shape model. In: Papież, B.W., Yaqub, M., Jiao, J., Namburete, A.I.L., Noble, J.A. (eds.) MIUA 2021. LNCS, vol. 12722, pp. 201–209. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-80432-9_16

    Chapter  Google Scholar 

  4. Bastian, L., et al.: S3M: scalable statistical shape modeling through unsupervised correspondences. arXiv preprint arXiv:2304.07515 (2023)

  5. Berendsen, F.F., Van Der Heide, U.A., Langerak, T.R., Kotte, A.N., Pluim, J.P.: Free-form image registration regularized by a statistical shape model: application to organ segmentation in cervical MR. Comput. Vis. Image Underst. 117(9), 1119–1127 (2013)

    Article  Google Scholar 

  6. Chai, H.H., et al.: Successful use of a 5G-based robot-assisted remote ultrasound system in a care center for disabled patients in rural China. Front. Publ. Health 10, 915071 (2022)

    Google Scholar 

  7. Chan, C.S., Edwards, P.J., Hawkes, D.J.: Integration of ultrasound-based registration with statistical shape models for computer-assisted orthopedic surgery. In: Medical Imaging 2003: Image Processing, vol. 5032, pp. 414–424. SPIE (2003)

    Google Scholar 

  8. Cheng, A., Lee, J.W.K., Ngiam, K.Y.: Use of 3D ultrasound to characterise temporal changes in thyroid nodules: an in vitro study. J. Ultrasound (2022)

    Google Scholar 

  9. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  10. Ellingsen, L.M., Chintalapani, G., Taylor, R.H., Prince, J.L.: Robust deformable image registration using prior shape information for atlas to patient registration, 34(1) (2010)

    Google Scholar 

  11. Feng, M., Hu, S., Ang, M.H., Lee, G.H.: 2D3D-matchnet: learning to match keypoints across 2D image and 3D point cloud. In: ICRA 2019 (2019)

    Google Scholar 

  12. Ferrante, E., Paragios, N.: Slice-to-volume medical image registration: a survey. Med. Image Anal. 39, 101–123 (2017)

    Article  Google Scholar 

  13. Fu, Y., Lei, Y., Wang, T., Curran, W.J., Liu, T., Yang, X.: Deep learning in medical image registration: a review. Phys. Med. Biol. 65(20), 20TR01 (2020)

    Google Scholar 

  14. Ghanavati, S., Mousavi, P., Fichtinger, G., Abolmaesumi, P.: Phantom validation for ultrasound to statistical shape model registration of human pelvis. In: Medical Imaging 2011: Visualization, Image-Guided Procedures, and Modeling, vol. 7964, pp. 855–862. SPIE (2011)

    Google Scholar 

  15. Ghanavati, S., Mousavi, P., Fichtinger, G., Foroughi, P., Abolmaesumi, P.: Multi-slice to volume registration of ultrasound data to a statistical atlas of human pelvis. In: Medical Imaging 2010: Visualization, Image-Guided Procedures, and Modeling, vol. 7625, pp. 213–222. SPIE (2010)

    Google Scholar 

  16. Grassi, L., Väänänen, S.P., Isaksson, H.: Statistical shape and appearance models: development towards improved osteoporosis care. Curr. Osteoporos. Rep. 19, 676–687 (2021)

    Article  Google Scholar 

  17. Guerreiro, F., et al.: Evaluation of a multi-atlas CT synthesis approach for MRI-only radiotherapy treatment planning. Physica Medica (2017)

    Google Scholar 

  18. Haugen, B.R., Alexander, E.K., Bible, K.C., Doherty, G.M., Mandel, S.J., et al.: 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 26(1) (2016)

    Google Scholar 

  19. Heimann, T., Meinzer, H.P.: Statistical shape models for 3D medical image segmentation: a review, 13(4), 543–563 (2009)

    Google Scholar 

  20. Hennersperger, C., et al.: Towards MRI-based autonomous robotic US acquisitions: a first feasibility study, 36(2), 538–548 (2017)

    Google Scholar 

  21. Hu, X., Chen, X., Liu, Y., Chen, E.Z., Chen, T., Sun, S.: Deep statistic shape model for myocardium segmentation. arXiv preprint arXiv:2207.10607 (2022)

  22. Krönke, M., Eilers, C., Dimova, D., Köhler, M., Buschner, G., et al.: Tracked 3D ultrasound and deep neural network-based thyroid segmentation reduce interobserver variability in thyroid volumetry. PloS ONE 17(7) (2022)

    Google Scholar 

  23. Lüdke, D., Amiranashvili, T., Ambellan, F., Ezhov, I., Menze, B.H., Zachow, S.: Landmark-free statistical shape modeling via neural flow deformations. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13432, pp. 453–463. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16434-7_44

    Chapter  Google Scholar 

  24. Markova, V., Ronchetti, M., Wein, W., Zettinig, O., Prevost, R.: Global multi-modal 2D/3D registration via local descriptors learning. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13436, pp. 269–279. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16446-0_26

    Chapter  Google Scholar 

  25. Moenning, C., Dodgson, N.A.: Fast marching farthest point sampling. Eurographics 2003 - Posters (2003)

    Google Scholar 

  26. Naceri, A., et al.: Tactile robotic telemedicine for safe remote diagnostics in times of corona: system design, feasibility and usability study. IEEE Robot. Autom. Lett. 7(4), 10296–10303 (2022)

    Article  MathSciNet  Google Scholar 

  27. Raju, A., Miao, S., Jin, D., Lu, L., Huang, J., Harrison, A.P.: Deep implicit statistical shape models for 3D medical image delineation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 2135–2143 (2022)

    Google Scholar 

  28. Samei, G., Karimi, D., Kesch, C., Salcudean, S.: Automatic segmentation of the prostate on 3D trans-rectal ultrasound images using statistical shape models and convolutional neural networks. arXiv preprint arXiv:2106.09662 (2021)

  29. Schönemann, P.H.: A generalized solution of the orthogonal procrustes problem. Psychometrika 31(1), 1–10 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  30. Song, X., et al.: Cross-modal attention for MRI and ultrasound volume registration. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12904, pp. 66–75. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87202-1_7

    Chapter  Google Scholar 

  31. Tang, Z., Chen, K., Pan, M., Wang, M., Song, Z.: An augmentation strategy for medical image processing based on statistical shape model and 3D thin plate spline for deep learning. IEEE Access 7, 133111–133121 (2019)

    Article  Google Scholar 

  32. Uzunova, H., Wilms, M., Forkert, N.D., Handels, H., Ehrhardt, J.: A systematic comparison of generative models for medical images. Int. J. Comput. Assist. Radiol. Surg. 17(7), 1213–1224 (2022)

    Article  Google Scholar 

  33. Yeung, P.H., Aliasi, M., Haak, M., Xie, W., Namburete, A.I.: Adaptive 3D localization of 2D freehand ultrasound brain images. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13434, pp. 207–217. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16440-8_20

    Chapter  Google Scholar 

  34. Zhang, Y.Q., Yin, H.H., He, T., Guo, L.H., Zhao, C.K., Xu, H.X.: Clinical application of a 5G-based telerobotic ultrasound system for thyroid examination on a rural island: a prospective study. Endocrine 76(3), 620–634 (2022)

    Google Scholar 

Download references

Acknowledgements and Disclosure

The thyroid dataset used for all experiments is publicly available. Vincent Bürgin is supported by the DAAD program Konrad Zuse Schools of Excellence in Artificial Intelligence, sponsored by the Federal Ministry of Education and Research. The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lennart Bastian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bastian, L. et al. (2023). On the Localization of Ultrasound Image Slices Within Point Distribution Models. In: Wachinger, C., Paniagua, B., Elhabian, S., Li, J., Egger, J. (eds) Shape in Medical Imaging. ShapeMI 2023. Lecture Notes in Computer Science, vol 14350. Springer, Cham. https://doi.org/10.1007/978-3-031-46914-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46914-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46913-8

  • Online ISBN: 978-3-031-46914-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics