Abstract
Prenatal alcohol exposure (PAE) has garnered increasing attention due to its detrimental effects on both neonates and expectant mothers. Recent research indicates that spatio-temporal functional brain networks (FBNs), derived from functional magnetic resonance imaging (fMRI), have the potential to reveal changes in PAE and Non-dysmorphic PAE (Non-Dys PAE) groups compared with healthy controls. However, current deep learning approaches for decomposing the FBNs are still limited to hand-crafted neural network architectures, which may not lead to optimal performance in identifying FBNs that better reveal differences between PAE and healthy controls. In this paper, we utilize a novel graph representation-based neural architecture search (GR-NAS) model to optimize the inner cell architecture of recurrent neural network (RNN) for decomposing the spatio-temporal FBNs and identifying the neuroimaging biomarkers of subtypes of PAE. Our optimized RNN cells with the GR-NAS model revealed that the functional activation decreased from healthy controls to Non-Dys PAE then to PAE groups. Our model provides a novel computational tool for the diagnosis of PAE, and uncovers the brain’s functional mechanism in PAE.
Q. Li and H. Dai—Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Jones, K.L., Smith, D.W.: Recognition of the fetal alcohol syndrome in early infancy. Lancet 302, 999–1001 (1973). https://doi.org/10.1016/S0140-6736(73)91092-1
Sandler, A.D.: Brain dysmorphology in individuals with severe prenatal alcohol exposure. J. Dev. Behav. Pediatr. 22, 341 (2001). https://doi.org/10.1097/00004703-200110000-00024
Bandoli, G., et al.: Patterns of prenatal alcohol exposure and alcohol-related dysmorphic features. Alcohol. Clin. Exp. Res. 44, 2045–2052 (2020)
Mattson, S.N., Bernes, G.A., Doyle, L.R.: Fetal alcohol spectrum disorders: a review of the neurobehavioral deficits associated with prenatal alcohol exposure. Alcohol. Clin. Exp. Res. 43, 1046–1062 (2019)
Zhao, S., et al.: A multi-stage sparse coding framework to explore the effects of prenatal alcohol exposure. In: Ourselin, S., Joskowicz, L., Sabuncu, M., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9900, pp. 28–36. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46720-7_4
Lv, J., et al.: Assessing effects of prenatal alcohol exposure using group-wise sparse representation of FMRI data. Psychiatry Res. 233, 254–268 (2015). https://doi.org/10.1016/j.gde.2016.03.011
Huang, H., et al.: Modeling task fMRI data via deep convolutional autoencoder. IEEE Trans. Med. Imaging 37, 1551–1561 (2018). https://doi.org/10.1109/TMI.2017.2715285
Li, Q., Dong, Q., Ge, F., Qiang, N., Wu, X., Liu, T.: Simultaneous spatial-temporal decomposition for connectome-scale brain networks by deep sparse recurrent auto-encoder. Brain Imaging Behav. 15, 2646–2660 (2021). https://doi.org/10.1007/s11682-021-00469-w
Zhao, Y., et al.: 4D Modeling of fMRI data via spatio-temporal convolutional neural networks (ST-CNN). IEEE Trans. Cognit. Dev. Syst. 12, 451–460 (2020). https://doi.org/10.1109/TCDS.2019.2916916
Zhao, L., et al.: Embedding human brain function via transformer. Presented at the (2022). https://doi.org/10.1007/978-3-031-16431-6_35
Zhao, L., Dai, H., Jiang, X., Zhang, T., Zhu, D., Liu, T.: Exploring the functional difference of Gyri/Sulci via hierarchical interpretable autoencoder. Presented at the (2021). https://doi.org/10.1007/978-3-030-87234-2_66
Yu, X., Zhang, L., Zhao, L., Lyu, Y., Liu, T., Zhu, D.: Disentangling spatial-temporal functional brain networks via twin-transformers (2022)
Li, Q., et al.: Simultaneous spatial-temporal decomposition of connectome-scale brain networks by deep sparse recurrent auto-encoders. In: Chung, A., Gee, J., Yushkevich, P., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 579–591. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_45
Li, Q., Zhang, W., Zhao, L., Wu, X., Liu, T.: Evolutional neural architecture search for optimization of spatiotemporal brain network decomposition. IEEE Trans. Biomed. Eng. 69, 624–634 (2022). https://doi.org/10.1109/TBME.2021.3102466
Zhang, W., et al.: Identify hierarchical structures from task-based fMRI data via hybrid spatiotemporal neural architecture search net. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 745–753. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_83
Liu, S., Ge, F., Zhao, L., Wang, T., Ni, D., Liu, T.: NAS-optimized topology-preserving transfer learning for differentiating cortical folding patterns. Med. Image Anal. 77, 102316 (2022). https://doi.org/10.1016/j.media.2021.102316
Dai, H., Ge, F., Li, Q., Zhang, W., Liu, T.: Optimize CNN model for FMRI signal classification via Adanet-based neural architecture search. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 1399–1403. IEEE (2020). https://doi.org/10.1109/ISBI45749.2020.9098574
Li, Q., Zhang, W., Lv, J., Wu, X., Liu, T.: Neural architecture search for optimization of spatial-temporal brain network decomposition. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 377–386. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_37
Liu, H., Simonyan, K., Yang, Y.: DARTS: differentiable architecture search. In: International Conference on Learning Representations – ICLR, pp. 1–12 (2019)
Li, Q., Wu, X., Liu, T.: Differentiable neural architecture search for optimal spatial/temporal brain function network decomposition. Med. Image Anal. 69, 101974 (2021). https://doi.org/10.1016/j.media.2021.101974
Wozniak, J.R., et al.: Functional connectivity abnormalities and associated cognitive deficits in fetal alcohol spectrum disorders (FASD). Brain Imaging Behav. 11, 1432–1445 (2017)
Dai, H., et al.: Graph representation neural architecture search for optimal spatial/temporal functional brain network decomposition. In: Lian, C., Cao, X., Rekik, I., Xu, X., Cui, Z. (eds.) MLMI 2022. LNCS, vol. 13583, pp. 279–287. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-21014-3_29
Xu, K., Jegelka, S., Hu, W., Leskovec, J.: How powerful are graph neural networks? In: International Conference on Learning Representations – ICLR, pp. 1–17 (2019)
Santhanam, P., Li, Z., Hu, X., Lynch, M., Coles, C.: Effects of prenatal alcohol exposure on brain activation during an arithmetic task: an fMRI study. Alcohol. Clin. Exp. Res. 33, 1901–1908 (2009)
Graves, A.: Generating Sequences with Recurrent Neural Networks. http://arxiv.org/abs/1308.0850
Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. Roy. Stat. Soc. B 67, 301–320 (2005). https://doi.org/10.1037/h0100860
Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26, 297–302 (1945)
Calhoun, V.D., Eichele, T., Pearlson, G.: Functional brain networks in schizophrenia: a review. Front. Hum. Neurosci. 3, 1–12 (2009). https://doi.org/10.3389/neuro.09.017.2009
Barch, D.M., et al.: Function in the human connectome: task-fMRI and individual differences in behavior. Neuroimage 80, 169–189 (2013). https://doi.org/10.1016/j.neuroimage.2013.05.033
Santhanam, P., Coles, C.D., Li, Z., Li, L., Lynch, M.E., Hu, X.: Default mode network dysfunction in adults with prenatal alcohol exposure. Psychiatry Res Neuroimaging 194, 354–362 (2011)
Acknowledgment
This work was partially supported by the National Natural Science Foundation of China (Grant No. 62206024).
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Li, Q. et al. (2023). Individual Functional Network Abnormalities Mapping via Graph Representation-Based Neural Architecture Search. In: Yang, X., et al. Advanced Data Mining and Applications. ADMA 2023. Lecture Notes in Computer Science(), vol 14178. Springer, Cham. https://doi.org/10.1007/978-3-031-46671-7_6
Download citation
DOI: https://doi.org/10.1007/978-3-031-46671-7_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-46670-0
Online ISBN: 978-3-031-46671-7
eBook Packages: Computer ScienceComputer Science (R0)