Abstract
Knowledge graph serves as a side information, bringing diversity and interpretability to the recommendation. A well-developed recommender system can efficiently capture user and item characteristics, accurately reflecting user preferences. However, supervised signals with graph structure are extraordinarily sparse, and the collaborative and knowledge graphs contain irrelevant edges, exacerbating noise propagation and reducing the robustness of recommendations. To address the above issues, we propose a model for enhancing Knowledge-aware Recommendation with Contrastive Learning (KRCL), including two contrastive learning tasks and three functional modules. Specifically, we construct two views, using TransR and TATEC to optimize knowledge representations from distance and semantic aspects, respectively. After the item-side knowledge is augmented, we remove unreliable interaction edges from collaborative graph to reduce noise propagation. We then perform contrastive learning on the output node representations of different views through graph propagation. To further tap the latent interest of users, we consider users/items that exhibit similar representations as semantic neighbors, treating them as positive pairs in contrastive learning. The structural and semantic contrastive tasks are eventually integrated in a multi-task learning manner to jointly boost the recommendation performance. To validate the effectiveness of our method, we conduct extensive experiments on three benchmark datasets. Experimental results demonstrate that our KRCL significantly outperforms previous state-of-the-art baselines.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ai, Q., Azizi, V., Chen, X., Zhang, Y.: Learning heterogeneous knowledge base embeddings for explainable recommendation. Algorithms 11(9), 137 (2018)
Chen, H., Li, Y., Sun, X., Xu, G., Yin, H.: Temporal meta-path guided explainable recommendation. In: Proceedings of the 14th ACM International Conference on Web Search and Data Mining, pp. 1056–1064 (2021)
Chen, H., Wang, L., Lin, Y., Yeh, C.C.M., Wang, F., Yang, H.: Structured graph convolutional networks with stochastic masks for recommender systems. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 614–623 (2021)
Chen, J., Dong, H., Wang, X., Feng, F., Wang, M., He, X.: Bias and debias in recommender system: a survey and future directions. ACM Trans. Inf. Syst. 41(3), 1–39 (2023)
Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)
Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical data. SIAM Rev. 51(4), 661–703 (2009)
Gao, J., He, D., Tan, X., Qin, T., Wang, L., Liu, T.-Y.: Representation degeneration problem in training natural language generation models. arXiv preprint arXiv:1907.12009 (2019)
García-Durán, A., Bordes, A., Usunier, N.: Effective blending of two and three-way interactions for modeling multi-relational data. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014. LNCS (LNAI), vol. 8724, pp. 434–449. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44848-9_28
Giorgi, J., Nitski, O., Wang, B., Bader, G.: Declutr: deep contrastive learning for unsupervised textual representations. arXiv preprint arXiv:2006.03659 (2020)
He, X., Chua, T.-S.: Neural factorization machines for sparse predictive analytics. In: Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 355–364 (2017)
He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., Wang, M.: Lightgcn: simplifying and powering graph convolution network for recommendation. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 639–648 (2020)
Huang, C., et al.: Knowledge-aware coupled graph neural network for social recommendation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 4115–4122 (2021)
Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 29 (2015)
Lin, Z., Tian, C., Hou, Y., Zhao, W.X.: Improving graph collaborative filtering with neighborhood-enriched contrastive learning. In: Proceedings of the ACM Web Conference 2022, pp. 2320–2329 (2022)
McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: homophily in social networks. Annu. Rev. Sociol. 27(1), 415–444 (2001)
van den Oord, A., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)
Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian personalized ranking from implicit feedback. arXiv preprint arXiv:1205.2618 (2012)
Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International Conference on World Wide Web, pp. 285–295 (2001)
Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)
Wang, H., et al.: Ripplenet: propagating user preferences on the knowledge graph for recommender systems. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, pp. 417–426 (2018)
Wang, X., Jin, H., Zhang, A., He, X., Xu, T., Chua, T.-S.: Disentangled graph collaborative filtering. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1001–1010 (2020)
Wang, X., Wang, D., Canran, X., He, X., Cao, Y., Chua, T.-S.: Explainable reasoning over knowledge graphs for recommendation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 5329–5336 (2019)
Wang, X., He, X., Cao, Y., Liu, M., Chua, T.-S.: KGAT: knowledge graph attention network for recommendation. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 950–958 (2019)
Wang, X., et al.: Learning intents behind interactions with knowledge graph for recommendation. In: Proceedings of the Web Conference 2021, pp. 878–887 (2021)
Wang, X., He, X., Wang, M., Feng, F., Chua, T.-S.: Neural graph collaborative filtering. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 165–174 (2019)
Wang, Z., Lin, G., Tan, H., Chen, Q., Liu, X.: CKAN: collaborative knowledge-aware attentive network for recommender systems. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 219–228 (2020)
Wu, J., et al.: Self-supervised graph learning for recommendation. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 726–735 (2021)
Wu, Y., et al.: Multi-view multi-behavior contrastive learning in recommendation. In: Bhattacharya, A., et al. (eds.) DASFAA 2022. LNCS, vol. 13246, pp. 166–182. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-00126-0_11
Xia, L., Huang, C., Xu, Y., Zhao, J., Yin, D., Huang, J.: Hypergraph contrastive collaborative filtering. In: Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 70–79 (2022)
Xian, Y., Fu, Z., Muthukrishnan, S., De Melo, G., Zhang, Y.: Reinforcement knowledge graph reasoning for explainable recommendation. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 285–294 (2019)
Xie, X., et al.: Contrastive learning for sequential recommendation. In: 2022 IEEE 38th International Conference on Data Engineering (ICDE), pp. 1259–1273. IEEE (2022)
Xu, J., Li, Z., Du, B., Zhang, M., Liu, J.: Reluplex made more practical: leaky ReLU. In: 2020 IEEE Symposium on Computers and communications (ISCC), pp. 1–7. IEEE (2020)
Yang, Y., Huang, C., Xia, L., Li, C.: Knowledge graph contrastive learning for recommendation. In: Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1434–1443 (2022)
Zhang, F., Yuan, N.J., Lian, D., Xie, X., Ma, W.-Y.: Collaborative knowledge base embedding for recommender systems. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 353–362 (2016)
Zhuang, C., Ma, Q.: Dual graph convolutional networks for graph-based semi-supervised classification. In: Proceedings of the 2018 World Wide Web Conference, pp. 499–508 (2018)
Zou, D., et al.: Multi-level cross-view contrastive learning for knowledge-aware recommender system. In: Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1358–1368 (2022)
Acknowledgements
Our work was supported by Sichuan Science and Technology Program (No. 2023YFG0021, No. 2022YFG0038 and No. 2021YFG0018), and by Xinjiang Science and Technology Program (No. 2022D01B185).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zhang, X., Gao, H. (2023). Enhancing Knowledge-Aware Recommendation with Contrastive Learning. In: Yang, X., et al. Advanced Data Mining and Applications. ADMA 2023. Lecture Notes in Computer Science(), vol 14176. Springer, Cham. https://doi.org/10.1007/978-3-031-46661-8_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-46661-8_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-46660-1
Online ISBN: 978-3-031-46661-8
eBook Packages: Computer ScienceComputer Science (R0)