A Bottom-Up Sampling Strategy for Reconstructing Geospatial Data from Ultra Sparse Inputs | SpringerLink
Skip to main content

A Bottom-Up Sampling Strategy for Reconstructing Geospatial Data from Ultra Sparse Inputs

  • Conference paper
  • First Online:
Advanced Data Mining and Applications (ADMA 2023)

Abstract

Working with observational data in the context of geophysics can be challenging, since we often have to deal with missing data. This requires imputation techniques in pre-processing to obtain data-mining-ready samples. Here, we present a convolutional neural network (CNN) approach from the domain of deep learning to reconstruct complete data from sparse inputs. CNN architectures are state-of-the-art for image processing. As data, we use two-dimensional fields of sea level pressure (SLP) and sea surface temperature (SST) anomalies. To have consistent data over a sufficiently long time span, we favor to work with output from control simulations of two Earth System Models (ESMs), namely the Flexible Ocean and Climate Infrastructure and the Community Earth System Model. Our networks can restore complete information from incomplete input samples with varying rates of missing data. Moreover, we present a technique to identify the most relevant grid points of our input samples. Choosing the optimal subset of grid points allows us to successfully reconstruct SLP and SST anomaly fields from ultra sparse inputs. As a proof of concept, the insights obtained from ESMs can be transferred to real world observations to improve reconstruction quality. As uncertainty measure, we compare several climate indices derived from reconstructed versus complete fields.

This work was supported by the Helmholtz School for Marine Data Science (MarDATA) funded by the Helmholtz Association (Grant HIDSS-0005).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11210
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14013
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Data Availability Statement

Our framework for reconstructing missing data is hosted on GitHub: https://github.com/MarcoLandtHayen/reconstruct_missing_data. Trained models and all results are stored in a separate Git repository: https://git.geomar.de/marco-landt-hayen/reconstruct_missing_data_results. Observational data used in this work are publicly available [12]. ESM data are stored on Zenodo: https://doi.org/10.5281/zenodo.7774316.

References

  1. Beckers, J.M., Rixen, M.: EOF calculations and data filling from incomplete oceanographic datasets. J. Atmos. Oceanic Tech. 20(12), 1839–1856 (2003)

    Article  Google Scholar 

  2. Alvera-Azcárate, A., Barth, A., Rixen, M., Beckers, J.M.: Reconstruction of incomplete oceanographic data sets using empirical orthogonal functions: application to the Adriatic Sea surface temperature. Ocean Model. 9(4), 325–346 (2005). https://doi.org/10.1016/j.ocemod.2004.08.001

    Article  Google Scholar 

  3. Alvera-Azcárate, A., Barth, A., Beckers J.M., Weisberg, R.H.: Multivariate reconstruction of missing data in sea surface temperature, chlorophyll, and wind satellite fields. J. Geophys. Res. Oceans 112(C3) (2007) https://doi.org/10.1029/2006JC003660

  4. Yang, Y.C., Lu, C.Y., Huang, S.J., Yang, T.Z., Chang, Y.C., Ho, C.R.: On the reconstruction of missing sea surface temperature data from Himawari-8 in adjacent waters of Taiwan using DINEOF conducted with 25-h data. Remote Sens. 2022(14), 2818 (2022). https://doi.org/10.3390/rs14122818

    Article  Google Scholar 

  5. Chai, X., Gu, H., Li, F., Duan, H., Hu, X., Lin, K.: Deep learning for irregularly and regularly missing data reconstruction. Sci. Rep. 10, 3302 (2020). https://doi.org/10.1038/s41598-020-59801-x

    Article  Google Scholar 

  6. Barth, A., Alvera-Azcárate, A., Troupin, C., Beckers, J.M.: DINCAE 2.0: multivariate convolutional neural network with error estimates to reconstruct sea surface temperature satellite and altimetry observations. Geosci. Model Develop. 15(5), 2183–2196 (2022). https://doi.org/10.5194/gmd-15-2183-2022

  7. Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.-R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation, PLoS ONE 10 (2015)

    Google Scholar 

  8. Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions, In Proceedings of the 31st Conference on Neural Information Processing Systems, Long Beach (2017). https://doi.org/10.48550/arXiv.1705.07874

  9. Matthes, K., et al.: The flexible ocean and climate infrastructure version 1 (FOCI1): mean state and variability. Geosci. Model Developm. 13(6), 2533–2568 (2020)

    Google Scholar 

  10. Hurrell, J.W., et al.: The community earth system model: a framework for collaborative research. Bull. Am. Meteor. Soc. 94, 1339–1360 (2013)

    Google Scholar 

  11. Marsh, D.R., Mills, M.J., Kinnison, D.E., Lamarque, J.F., Calvo, N., Polvani, L.M.: Climate change from 1850 to 2005 simulated in CESM1 (WACCM). J. Clim. 26(19), 7372–7391 (2013)

    Article  Google Scholar 

  12. National Oceanic and Atmospheric Administration Download Center. https://downloads.psl.noaa.gov/Datasets/ncep.reanalysis.derived/surface/pres.sfc.mon.mean.nc, and https://downloads.psl.noaa.gov/Datasets/noaa.ersst.v5/sst.mnmean.nc

  13. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, vol. 9351, pp. 234–241 (2015). https://doi.org/10.1007/978-3-319-24574-4_28

  14. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://www.deeplearningbook.org

  15. He, K., Zhang, X., Ren, S., Jian, S.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegar, pp. 770–778 (2016) https://doi.org/10.1109/CVPR.2016.90

  16. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of the 3rd International Conference for Learning Representations, San Diego (2014). https://arxiv.org/abs/1412.6980

  17. Reynolds, D.A., Gaussian Mixture Models, Encyclopedia of Biometrics, pp. 827–832 (2009). https://doi.org/10.1007/978-1-4899-7488-4_196

  18. Gong, D., Wang, S.: Definition of antarctic oscillation index. Geophys. Res. Lett. 26(4), 459–462 (1999)

    Article  Google Scholar 

  19. Hurrell, J.W.: Decadal trends in the North Atlantic oscillation: regional temperatures and precipitation. Science 269(5224), 676–679 (1995)

    Article  Google Scholar 

  20. Schlesinger, M.E., Ramankutty, N.: An oscillation in the global climate system of period 65–70 years. Nature 367, 723–726 (1994)

    Article  Google Scholar 

  21. Philander S.G.: El Niño, La Niña, and the Southern Oscillation. Academic Press (1989)

    Google Scholar 

  22. Trenberth, K.E., Shea, D.J.: Atlantic hurricanes and natural variability in 2005. Geophys. Res. Lett. 33(12) (2006)

    Google Scholar 

  23. Morrow, R., Ward, M.L., Hogg, A.McC., Pasquet, S.: Eddy response to Southern Ocean climate modes. J. Geophys. Res. 115(C10) (2010). https://doi.org/10.1029/2009JC005894

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Landt-Hayen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Landt-Hayen, M., Wölker, Y., Rath, W., Claus, M. (2023). A Bottom-Up Sampling Strategy for Reconstructing Geospatial Data from Ultra Sparse Inputs. In: Yang, X., et al. Advanced Data Mining and Applications. ADMA 2023. Lecture Notes in Computer Science(), vol 14176. Springer, Cham. https://doi.org/10.1007/978-3-031-46661-8_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46661-8_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46660-1

  • Online ISBN: 978-3-031-46661-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics