MDCN: Multi-scale Dilated Convolutional Enhanced Residual Network for Traffic Sign Detection | SpringerLink
Skip to main content

MDCN: Multi-scale Dilated Convolutional Enhanced Residual Network for Traffic Sign Detection

  • Conference paper
  • First Online:
Advanced Data Mining and Applications (ADMA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14176))

Included in the following conference series:

  • 1029 Accesses

Abstract

Detecting small, multi-scale, and easily obscured traffic signs in real-world scenarios presents a persistent challenge. This paper proposes an approach that utilizes a multi-scale feature pyramid module to capture hierarchical features, facilitating robust detection of traffic signs across varying viewing angles and scales. To aggregate features at different scales and eliminate background interference, we employ a superposition of null convolution kernels with varying dilation rates, expanding the perceptual field from small to large. This effectively covers the object distribution across multiple scales while enhancing the resolution of the final output feature map for improved small target localization. Our method has demonstrated its effectiveness and superiority over several state-of-the-art approaches through extensive experiments conducted on two public traffic sign detection datasets.

Y. Ke and W. Mo—Contribute equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11210
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14013
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: Yolov4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)

  2. Cai, Z., Vasconcelos, N.: Cascade r-CNN: high quality object detection and instance segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 43(5), 1483–1498 (2019)

    Article  Google Scholar 

  3. Chen, Q., Wang, Y., Yang, T., Zhang, X., Cheng, J., Sun, J.: You only look one-level feature. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13039–13048 (2021)

    Google Scholar 

  4. Elsagheer Mohamed, S.A., AlShalfan, K.A.: Intelligent traffic management system based on the internet of vehicles (IoV). J. Adv. Transp. 2021, 1–23 (2021)

    Google Scholar 

  5. Feng, C., Zhong, Y., Gao, Y., Scott, M.R., Huang, W.: TOOD: task-aligned one-stage object detection. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 3490–3499. IEEE Computer Society (2021)

    Google Scholar 

  6. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  7. Houben, S., Stallkamp, J., Salmen, J., Schlipsing, M., Igel, C.: Detection of traffic signs in real-world images: the German traffic sign detection benchmark. In: The 2013 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2013)

    Google Scholar 

  8. Keskar, N.S., Mudigere, D., Nocedal, J., Smelyanskiy, M., Tang, P.T.P.: On large-batch training for deep learning: generalization gap and sharp minima. arXiv preprint arXiv:1609.04836 (2016)

  9. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of The IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  10. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  11. Liu, Y., Peng, J., Xue, J.H., Chen, Y., Fu, Z.H.: Tsingnet: scale-aware and context-rich feature learning for traffic sign detection and recognition in the wild. Neurocomputing 447, 10–22 (2021)

    Article  Google Scholar 

  12. Pang, J., Chen, K., Shi, J., Feng, H., Ouyang, W., Lin, D.: Libra R-CNN: towards balanced learning for object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 821–830 (2019)

    Google Scholar 

  13. Qiao, S., Wang, H., Liu, C., Shen, W., Yuille, A.: Micro-batch training with batch-channel normalization and weight standardization. arXiv preprint arXiv:1903.10520 (2019)

  14. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  15. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems 28 (2015)

    Google Scholar 

  16. Shen, L., You, L., Peng, B., Zhang, C.: Group multi-scale attention pyramid network for traffic sign detection. Neurocomputing 452, 1–14 (2021)

    Article  Google Scholar 

  17. Wang, J., Chen, Y., Dong, Z., Gao, M.: Improved yolov5 network for real-time multi-scale traffic sign detection. Neural Comput. Appl. 35(10), 7853–7865 (2022)

    Google Scholar 

  18. Wu, Y., et al.: Rethinking classification and localization for object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10186–10195 (2020)

    Google Scholar 

  19. Yao, Y., Han, L., Du, C., Xu, X., Jiang, X.: Traffic sign detection algorithm based on improved yolov4-tiny. Signal Process.: Image Commun. 107, 116783 (2022)

    Google Scholar 

  20. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122 (2015)

  21. Zhang, H., Wang, Y., Dayoub, F., Sunderhauf, N.: Varifocalnet: an iou-aware dense object detector. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8514–8523 (2021)

    Google Scholar 

  22. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: Mixup: beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)

  23. Zhang, S., Chi, C., Yao, Y., Lei, Z., Li, S.Z.: Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9759–9768 (2020)

    Google Scholar 

Download references

Acknowledgment

This work is supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region (2020D01C33).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendong Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ke, Y., Mo, W., Li, Z., Cao, R., Zhang, W. (2023). MDCN: Multi-scale Dilated Convolutional Enhanced Residual Network for Traffic Sign Detection. In: Yang, X., et al. Advanced Data Mining and Applications. ADMA 2023. Lecture Notes in Computer Science(), vol 14176. Springer, Cham. https://doi.org/10.1007/978-3-031-46661-8_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46661-8_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46660-1

  • Online ISBN: 978-3-031-46661-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics