U-TEN: An Unsupervised Two-Branch Enhancement Network for Object Detection Under Complex-Light Condition | SpringerLink
Skip to main content

U-TEN: An Unsupervised Two-Branch Enhancement Network for Object Detection Under Complex-Light Condition

  • Conference paper
  • First Online:
Image and Graphics (ICIG 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14359))

Included in the following conference series:

  • 483 Accesses

Abstract

The goal of low-light enhancement is to improve the visual quality of dark regions in an image. However, the existing low-light enhancement methods always failed in nighttime traffic surveillance. The reason comes from complex-light instead of low-light, while traditional methods can hardly treat regions with different light conditions. In this paper, in order to solve above challenge, we propose an unsupervised tow-branch complex-light enhancement network (U-TEN) with graph attention network and generative adversarial network to enhance pixels in different regions according to their light conditions. To solve the problem that enhance weights are supposed to varied with regions, we proposed two-branch attention block. It aims to model two kinds of light information interaction. U-TEN can improve the object detection performance under complex-light condition in nighttime traffic surveillance. The proposed U-TEN is verified on ODLS dataset, and the results show that our network improves the object detection average precision by 3.50% on average, and 4.93% in maximum. These results demonstrate the proposed U-TEN has great potential to be used in vision applications of nighttime traffic surveillance.

This work was supported in part by the National Key Research and Development Program of China under Grant 2020YFB2103501, in part by the National Natural Science Foundation of China under Grant 61991412, in part by the Major Project of Fundamental Research on Frontier Leading Technology of Jiangsu Province under Grant BK20222006.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 7549
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 9437
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adelson, E.H., Anderson, C.H., Bergen, J.R., Burt, P.J., Ogden, J.M.: Pyramid methods in image processing. RCA Eng. 29(6), 33–41 (1984)

    Google Scholar 

  2. Fu, X., Liang, B., Huang, Y., Ding, X., Paisley, J.: Lightweight pyramid networks for image deraining. IEEE Trans. Neural Netw. Learn. Syst. 31(6), 1794–1807 (2019)

    Article  Google Scholar 

  3. Goodfellow, I., et al.: Generative adversarial networks, pp. 1–9. ArXiv preprint ArXiv:1406.2661 (2014)

  4. Guo, C., et al.: Zero-reference deep curve estimation for low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1780–1789 (2020)

    Google Scholar 

  5. Jain, V., Seung, S.: Natural image denoising with convolutional networks. In: Advances in Neural Information Processing Systems, vol. 21 (2008)

    Google Scholar 

  6. Jin, Y., Yang, W., Tan, R.T.: Unsupervised night image enhancement: when layer decomposition meets light-effects suppression. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022. LNCS, vol. 13697, pp. 404–421. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19836-6_23

  7. Jobson, D.J., Rahman, Z.U., Woodell, G.A.: A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Trans. Image Process. 6(7), 965–976 (1997)

    Google Scholar 

  8. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  9. Kejun, W., Qiong, L., Yi, W., You, Y.: End-to-end varifocal multiview images coding framework from data acquisition end to vision application end. Opt. Express 31(7), 11659–11679 (2023)

    Article  Google Scholar 

  10. Kejun, W., You, Y., Qiong, L., Xiao-Ping, Z.: Focal stack image compression based on basis-quadtree representation. IEEE Trans. Multimedia (2022). https://doi.org/10.1109/TMM.2022.3169055

    Article  Google Scholar 

  11. Kejun, W., You, Y., Qiong, L., Xiaoping, Z.: Gaussian-wiener representation and hierarchical coding scheme for focal stack images. IEEE Trans. Circuits Syst. Video Technol. 32(2), 523–537 (2022)

    Article  Google Scholar 

  12. Khan, R., Yang, Y., Liu, Q., Qaisar, Z.H.: Divide and conquer: ill-light image enhancement via hybrid deep network. Expert Syst. Appl. 182, 115034 (2021)

    Article  Google Scholar 

  13. Khan, R., Yang, Y., Liu, Q., Shen, J., Li, B.: Deep image enhancement for ill light imaging. J. Opt. Soc. Am. A 38(6), 827–839 (2021)

    Article  Google Scholar 

  14. Li, C., et al.: Low-light image and video enhancement using deep learning: a survey. IEEE Trans. Pattern Anal. Mach. Intell. (2021)

    Google Scholar 

  15. Li, C., Guo, C., Loy, C.C.: Learning to enhance low-light image via zero-reference deep curve estimation. IEEE Trans. Pattern Anal. Mach. Intell. 44(8), 4225–4238 (2021)

    Google Scholar 

  16. Lim, S., Kim, W.: DSLR: deep stacked Laplacian restorer for low-light image enhancement. IEEE Trans. Multimedia 23, 4272–4284 (2020)

    Article  Google Scholar 

  17. Lore, K.G., Akintayo, A., Sarkar, S.: LLNet: a deep autoencoder approach to natural low-light image enhancement. Pattern Recogn. 61, 650–662 (2017)

    Article  Google Scholar 

  18. Lv, F., Lu, F., Wu, J., Lim, C.: MBLLEN: low-light image/video enhancement using CNNs. In: British Machine Vision Conference, vol. 220, p. 4 (2018)

    Google Scholar 

  19. Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022)

    Google Scholar 

  20. Rashed, H., Ramzy, M., Vaquero, V., El Sallab, A., Sistu, G., Yogamani, S.: FuseMODNet: real-time camera and lidar based moving object detection for robust low-light autonomous driving. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (2019)

    Google Scholar 

  21. Rizwan, K., You, Y., Kejun, W., Atif, M., Zahid Hussain, Q., Zhonglong, Z.: A high dynamic range imaging method for short exposure multiview images. Pattern Recogn. 137, 109344 (2023)

    Article  Google Scholar 

  22. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. ArXiv preprint ArXiv:1710.10903 (2017)

  23. Wei, C., Wang, W., Yang, W., Liu, J.: Deep retinex decomposition for low-light enhancement. ArXiv preprint ArXiv:1808.04560 (2018)

  24. Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: URetinex-Net: retinex-based deep unfolding network for low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5901–5910 (2022)

    Google Scholar 

  25. Xu, K., Yang, X., Yin, B., Lau, R.W.: Learning to restore low-light images via decomposition-and-enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2281–2290 (2020)

    Google Scholar 

  26. Zhang, F., Shao, Y., Sun, Y., Zhu, K., Gao, C., Sang, N.: Unsupervised low-light image enhancement via histogram equalization prior. ArXiv preprint ArXiv:2112.01766 (2021)

  27. Zhang, Y., Zhang, J., Guo, X.: Kindling the darkness: a practical low-light image enhancer. In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 1632–1640 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Luo, X., Ma, X., Hu, S., Wu, K., Tang, J., Yang, Y. (2023). U-TEN: An Unsupervised Two-Branch Enhancement Network for Object Detection Under Complex-Light Condition. In: Lu, H., et al. Image and Graphics . ICIG 2023. Lecture Notes in Computer Science, vol 14359. Springer, Cham. https://doi.org/10.1007/978-3-031-46317-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46317-4_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46316-7

  • Online ISBN: 978-3-031-46317-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics