An Efficient Medical Image Fusion via Online Convolutional Sparse Coding with Sample-Dependent Dictionary | SpringerLink
Skip to main content

An Efficient Medical Image Fusion via Online Convolutional Sparse Coding with Sample-Dependent Dictionary

  • Conference paper
  • First Online:
Image and Graphics (ICIG 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14359))

Included in the following conference series:

  • 450 Accesses

Abstract

Convolutional sparse coding (CSC) as an interpretable signal representation and decomposition model has achieved promising performance in medical image fusion by virtue of translation-invariant dictionary. CSC-based compensates for the limited detail preservation capability and high sensitivity to misregistration of SR-based fusion methods. However, existing CSC-based fusion methods have high time consumption due to batch mode. The online convolutional sparse coding (SCSC) model of Sample-Dependent dictionary borrows the idea of separable filters with much lower time cost than CSC. In this paper, SCSC is introduced to medical image fusion to balance fusion performance and time consumption. The proposed method adopts classical ‘decomposition-fusion-reconstruction’ framework. Firstly, source images are decomposed into base and detail layers using two-scale image decomposition (Fast Fourier Transform). Secondly, average strategy is applied to base layer and detail layer uses SCSC to obtain fused detail components. Finally, two-scale image reconstruction (inverse Fast Fourier Transform) is used to reconstruct fused image. The analysis of subjective and objective results shows that our method improves efficiency while ensuring excellent fusion performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 7549
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 9437
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Xu, X., Wang, Y., Chen, S.: Medical image fusion using discrete fractional wavelet transform. Biomed. Sig. Process. Control 27, 103–111 (2016)

    Article  Google Scholar 

  2. Chavan, S.S., Mahajan, A., Talbar, S.N., Desai, S., Thakur, M., D’cruz, A.: Nonsubsampled rotated complex wavelet transform (NSRCxWT) for medical image fusion related to clinical aspects in neurocysticercosis. Comput. Biol. Med.. Biol. Med. 81, 64–78 (2017)

    Article  Google Scholar 

  3. Yin, M., Liu, X., Liu, Y., Chen, X.: Medical image fusion with parameter-adaptive pulse coupled neural network in nonsubsampled shearlet transform domain. IEEE Trans. Instrum. Meas.Instrum. Meas. 68(1), 49–64 (2018)

    Article  Google Scholar 

  4. Zhu, Z., Zheng, M., Qi, G., Wang, D., Xiang, Y.: A phase congruency and local Laplacian energy based multi-modality medical image fusion method in NSCT domain. IEEE Access 7, 20811–20824 (2019)

    Article  Google Scholar 

  5. Tan, W., Tiwari, P., Pandey, H.M., Moreira, C., Jaiswal, A.K.: Multimodal medical image fusion algorithm in the era of big data. Neural Comput. Appl. 1–21(2020)

    Google Scholar 

  6. Liu, Y., Chen, X., Cheng, J., Peng, H.: A medical image fusion method based on convolutional neural networks. In 2017 20th International Conference on Information Fusion, pp. 1–7 (2017)

    Google Scholar 

  7. Huang, J., Le, Z., Ma, Y., Fan, F., Zhang, H., Yang, L.: MGMDcGAN: medical image fusion using multi-generator multi-discriminator conditional generative adversarial network. IEEE Access 8, 55145–55157 (2020)

    Article  Google Scholar 

  8. Li, B., Hwang, J.N., Liu, Z., Li, C., Wang, Z.: PET and MRI image fusion based on a dense convolutional network with dual attention. Comput. Biol. Med.. Biol. Med. 151, 106339 (2022)

    Article  Google Scholar 

  9. Yousif, A.S., Omar, Z., Sheikh, U.U.: An improved approach for medical image fusion using sparse representation and Siamese convolutional neural network. Biomed. Sig. Process. Control 72, 103357 (2022)

    Article  Google Scholar 

  10. Liu, Y., Shi, Y., Mu, F., Cheng, J., Chen, X.: Glioma segmentation-oriented multi-modal MR image fusion with adversarial learning. IEEE/CAA J. Automatica Sinica 9(8), 1528–1531 (2022)

    Article  Google Scholar 

  11. Liu, Y., Chen, X., Ward, R.K., Wang, Z.J.: Image fusion with convolutional sparse representation. IEEE Sig. Process. Lett. 23(12), 1882–1886 (2016)

    Article  Google Scholar 

  12. Liu, Y., Chen, X., Ward, R.K., Wang, Z.J.: Medical image fusion via convolutional sparsity based morphological component analysis. IEEE Sig. Process. Lett. 26(3), 485–489 (2019)

    Article  Google Scholar 

  13. Wang, L., Shi, C., Lin, S., Qin, P., Wang, Y.: Convolutional sparse representation and local density peak clustering for medical image fusion. Int. J. Pattern Recogn. Artif. Intell. 34(07), 2057003 (2020)

    Google Scholar 

  14. Liu, F., Chen, L., Lu, L., Ahmad, A., Jeon, G., Yang, X.: Medical image fusion method by using Laplacian pyramid and convolutional sparse representation. Concurr. Comput. Pract. Exp. 32(17) (2020)

    Google Scholar 

  15. Wang, L., et al.: Multimodal medical image fusion based on nonsubsampled shearlet transform and convolutional sparse representation. Multimedia Tools Appl. 80, 36401–36421 (2021)

    Article  Google Scholar 

  16. Zhang, C.: Medical brain image fusion via convolution dictionary learning. In 2020 4th Annual International Conference on Data Science and Business Analytics, pp. 292–294 (2020)

    Google Scholar 

  17. Zhang, C., Feng, Z.: Medical image fusion using convolution dictionary learning with adaptive contrast enhancement. In: The 4th International Conference on Information Technologies and Electrical Engineering, pp. 1–5 (2021)

    Google Scholar 

  18. Veshki, F.G., Vorobyov, S.A.: Coupled feature learning via structured convolutional sparse coding for multimodal image fusion. In: ICASSP 2022–2022 IEEE International Conference on Acoustics, Speech and Signal and Processing, pp. 2500–2504 (2022)

    Google Scholar 

  19. Wang, Y., Yao, Q., Kwok, J.T., Ni, L.M.: Scalable online convolutional sparse coding. IEEE Trans. Image Process. 27(10), 4850–4859 (2018)

    Article  MathSciNet  Google Scholar 

  20. Zhang, C., Zhang, Z., Feng, Z.: Image fusion using online convolutional sparse coding. J. Ambient Intell. Human. Comput. 1–12 (2022)

    Google Scholar 

  21. Rigamonti, R., Sironi, A., Lepetit, V., Fua, P.: Learning separable filters. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2754–2761 (2013)

    Google Scholar 

  22. Sironi, A., Tekin, B., Rigamonti, R., Lepetit, V., Fua, P.: Learning separable filters. IEEE Trans. Pattern Anal. Mach. Intell.Intell. 37(1), 94–106 (2015)

    Article  Google Scholar 

  23. Wang, Y., Yao, Q., Kwok, J.T.Y.: Online convolutional sparse coding with sample-dependent dictionary. In: International Conference on Machine Learning, pp. 5209–5218 (2018)

    Google Scholar 

  24. Wohlberg, B.: Efficient algorithms for convolutional sparse representations. IEEE Trans. Image Process. 25(1), 301–315 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Garcia-Cardona, C., Wohlberg, B.: Convolutional dictionary learning: a comparative review and new algorithms. IEEE Trans. Comput. Imaging 4(3), 366–381 (2018)

    Article  MathSciNet  Google Scholar 

  26. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

    Article  MATH  Google Scholar 

  27. Yao, Q., Kwok, J., Gao, F., Chen, W., Liu, T.-Y.: Efficient inexact proximal gradient algorithm for nonconvex problems. In: International Joint Conferences on Artificial Intelligence, pp. 3308–3314 (2017)

    Google Scholar 

  28. Li, X., Zhou, F., Tan, H., Zhang, W., Zhao, C.: Multimodal medical image fusion based on joint bilateral filter and local gradient energy. Inf. Sci. 569, 302–325 (2021)

    Article  MathSciNet  Google Scholar 

  29. Li, X., Zhou, F., Tan, H.: Joint image fusion and denoising via three-layer decomposition and sparse representation. Knowl.-Based Syst..-Based Syst. 224, 107087 (2021)

    Article  Google Scholar 

  30. Zhao, J., Laganiere, R., Liu, Z.: Performance assessment of combinative pixel-level image fusion based on an absolute feature measurement. Int. J. Innov. Comput. Inf. Control 3(6), 1433–1447 (2007)

    Google Scholar 

  31. Jagalingam, P., Hegde, A.V.: A review of quality metrics for fused image. Aquatic Procedia 4, 133–142 (2015)

    Article  Google Scholar 

  32. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by Sichuan Science and Technology Program(2023NSFSC0495), Si-chuan University and Luzhou Municipal People’s Government Strategic cooperation pro-jects(2020CDLZ-10) and Colleague Project of Intelligent Policing Key Laboratory of Sichuan Province (ZNJW2022ZZMS001, ZNJW2023ZZQN004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengfang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, C., Feng, Z., Zhang, C., Yi, K. (2023). An Efficient Medical Image Fusion via Online Convolutional Sparse Coding with Sample-Dependent Dictionary. In: Lu, H., et al. Image and Graphics . ICIG 2023. Lecture Notes in Computer Science, vol 14359. Springer, Cham. https://doi.org/10.1007/978-3-031-46317-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46317-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46316-7

  • Online ISBN: 978-3-031-46317-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics