Abstract
This paper presents an innovative approach to address the pressing concern of fall incidents among the elderly by developing an accurate fall detection system. Our proposed system combines state-of-the-art technologies, including accelerometer and gyroscope sensors, with deep learning models, specifically Long Short-Term Memory (LSTM) networks. Real-time execution capabilities are achieved through the integration of Raspberry Pi hardware. We introduce pruning techniques that strategically fine-tune the LSTM model’s architecture and parameters to optimize the system’s performance. We prioritize recall over precision, aiming to accurately identify falls and minimize false negatives for timely intervention. Extensive experimentation and meticulous evaluation demonstrate remarkable performance metrics, emphasizing a high recall rate while maintaining a specificity of 96%. Our research culminates in a state-of-the-art fall detection system that promptly sends notifications, ensuring vulnerable individuals receive timely assistance and improve their overall well-being. Applying LSTM models and incorporating pruning techniques represent a significant advancement in fall detection technology, offering an effective and reliable fall prevention and intervention solution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aguiar, B., Rocha, T., Silva, J., Sousa, I.: Accelerometer-based fall detection for smartphones. In: 2014 IEEE International Symposium on Medical Measurements and Applications (MeMeA), pp. 1–6. IEEE (2014)
Anishchenko, L., Zhuravlev, A., Chizh, M.: Fall detection using multiple bioradars and convolutional neural networks. Sensors 19(24), 5569 (2019)
Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861–874 (2006)
Helmy, A., Helmy, A.: Seizario: novel mobile algorithms for seizure and fall detection. In: 2015 IEEE Globecom Workshops (GC Wkshps), pp. 1–6. IEEE (2015)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
Kaewkannate, K., Kim, S.: A comparison of wearable fitness devices. BMC Pub. Health 16, 1–16 (2016)
Kwolek, B., Kepski, M.: Fall detection using kinect sensor and fall energy image. In: Pan, J.-S., Polycarpou, M.M., Woźniak, M., de Carvalho, A.C.P.L.F., Quintián, H., Corchado, E. (eds.) HAIS 2013. LNCS (LNAI), vol. 8073, pp. 294–303. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40846-5_30
Ranakoti, S., et al.: Human fall detection system over IMU sensors using triaxial accelerometer. In: Verma, N.K., Ghosh, A.K. (eds.) Computational Intelligence: Theories, Applications and Future Directions - Volume I. AISC, vol. 798, pp. 495–507. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-1132-1_39
Sase, P.S., Bhandari, S.H.: Human fall detection using depth videos. In: 2018 5th International Conference on Signal Processing and Integrated Networks (SPIN), pp. 546–549. IEEE (2018)
Shi, Y., Shi, Y., Wang, X.: Fall detection on mobile phones using features from a five-phase model. In: 2012 9th International Conference on Ubiquitous Intelligence and Computing and 9th International Conference on Autonomic and Trusted Computing, pp. 951–956. IEEE (2012)
Taramasco, C., et al.: A novel monitoring system for fall detection in older people. IEEE Access 6, 43563–43574 (2018)
Tran, H.A., Ngo, Q.T., Tong, V.: A new fall detection system on android smartphone: application to a SDN-based IoT system. In: 2017 9th International Conference on Knowledge and Systems Engineering (KSE), pp. 1–6. IEEE (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 IFIP International Federation for Information Processing
About this paper
Cite this paper
Mondal, R., Ghosal, P. (2024). Recall-Driven Precision Refinement: Unveiling Accurate Fall Detection Using LSTM. In: Puthal, D., Mohanty, S., Choi, BY. (eds) Internet of Things. Advances in Information and Communication Technology. IFIPIoT 2023. IFIP Advances in Information and Communication Technology, vol 684. Springer, Cham. https://doi.org/10.1007/978-3-031-45882-8_6
Download citation
DOI: https://doi.org/10.1007/978-3-031-45882-8_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-45881-1
Online ISBN: 978-3-031-45882-8
eBook Packages: Computer ScienceComputer Science (R0)