Tailoring Large Language Models to Radiology: A Preliminary Approach to LLM Adaptation for a Highly Specialized Domain | SpringerLink
Skip to main content

Tailoring Large Language Models to Radiology: A Preliminary Approach to LLM Adaptation for a Highly Specialized Domain

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2023)

Abstract

In this preliminary work, we present a domain fine-tuned LLM model for radiology, an experimental large language model adapted for radiology. This model, created through an exploratory application of instruction tuning on a comprehensive dataset of radiological information, demonstrates promising performance when compared with broader language models such as StableLM, Dolly, and LLaMA. This model exhibits initial versatility in applications related to radiological diagnosis, research, and communication. Our work contributes an early but encouraging step towards the evolution of clinical NLP by implementing a large language model that is local and domain-specific, conforming to stringent privacy norms like HIPAA. The hypothesis of creating customized, large-scale language models catering to distinct requirements of various medical specialties, presents a thought-provoking direction. The blending of conversational prowess and specific domain knowledge in these models kindles hope for future enhancements in healthcare AI. While it is still in its early stages, the potential of generative large language models is intriguing and worthy of further exploration. The demonstration code of our domain fine-tuned LLM model for radiology can be accessed at https://anonymous.4open.science/r/radiology-llm-demo-C3E2/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8464
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10581
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Free Dolly. Introducing the World’s First Truly Open Instruction-Tuned LLM. databricks.com. https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm. Accessed 09 June 2023

  2. Stanford CRFM. crfm.stanford.edu. https://crfm.stanford.edu/2023/03/13/alpaca.html. Accessed 09 June 2023

  3. Alhendawi, K., Baharudin, A.S.: String matching algorithms (SMAS): survey & empirical analysis. J. Comput. Sci. Manag. (2013)

    Google Scholar 

  4. Anil, R., et al.: Palm 2 technical report. arXiv preprint arXiv:2305.10403 (2023)

  5. Dai, H., et al.: Ad-autogpt: an autonomous gpt for alzheimer’s disease infodemiology. arXiv preprint arXiv:2306.10095 (2023)

  6. Dai, H., et al.: Chataug: leveraging chatgpt for text data augmentation. arXiv preprint arXiv:2302.13007 (2023)

  7. Demner-Fushman, D., et al.: Preparing a collection of radiology examinations for distribution and retrieval. J. Am. Med. Inform. Assoc. 23(2), 304–310 (2016)

    Google Scholar 

  8. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  9. Hu, E.J., et al.: Lora: low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685 (2021)

  10. Hu, J., et al.: Word graph guided summarization for radiology findings. In: Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pp. 4980–4990 (2021)

    Google Scholar 

  11. Islamovic, A.: Stability AI Launches the First of its StableLM Suite of Language Models - Stability AI. stability.ai. https://stability.ai/blog/stability-ai-launches-the-first-of-its-stablelm-suite-of-language-models. Accessed 09 June 2023

  12. Johnson, A.E., et al.: Mimic-cxr, a de-identified publicly available database of chest radiographs with free-text reports. Sci. Data 6(1), 317 (2019)

    Article  Google Scholar 

  13. Liao, W., et al.: Differentiate chatgpt-generated and human-written medical texts. arXiv preprint arXiv:2304.11567 (2023)

  14. Lin, C.Y.: Rouge: a package for automatic evaluation of summaries. In: Text Summarization Branches Out, pp. 74–81 (2004)

    Google Scholar 

  15. Liu, Y., et al.: Summary of chatgpt/gpt-4 research and perspective towards the future of large language models. arXiv preprint arXiv:2304.01852 (2023)

  16. Liu, Z., et al.: Survey on natural language processing in medical image analysis. Zhong nan da xue xue bao. Yi xue ban J. Central South Univ. Med. Sci. 47(8), 981–993 (2022)

    Google Scholar 

  17. Liu, Z., He, X., Liu, L., Liu, T., Zhai, X.: Context matters: a strategy to pre-train language model for science education. arXiv preprint arXiv:2301.12031 (2023)

  18. Liu, Z., et al.: Deid-gpt: zero-shot medical text de-identification by gpt-4. arXiv preprint arXiv:2303.11032 (2023)

  19. Ma, C., et al.: Impressiongpt: an iterative optimizing framework for radiology report summarization with chatgpt. arXiv preprint arXiv:2304.08448 (2023)

  20. OpenAI, R.: Gpt-4 technical report. arXiv (2023)

    Google Scholar 

  21. Ouyang, L., et al.: Training language models to follow instructions with human feedback. arXiv preprint arXiv:2203.02155 (2022)

  22. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: a method for automatic evaluation of machine translation. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, pp. 311–318 (2002)

    Google Scholar 

  23. Rezayi, S., et al.: Clinicalradiobert: knowledge-infused few shot learning for clinical notes named entity recognition. In: Machine Learning in Medical Imaging: 13th International Workshop, MLMI 2022, Held in Conjunction with MICCAI 2022. LNCS, pp. 269–278. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-21014-3_28

  24. Sonn, G.A., et al.: Prostate magnetic resonance imaging interpretation varies substantially across radiologists. Eur. Urol. Focus 5(4), 592–599 (2019)

    Google Scholar 

  25. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  26. Wallis, A., McCoubrie, P.: The radiology report-are we getting the message across? Clin. Radiol. 66(11), 1015–1022 (2011)

    Article  Google Scholar 

  27. Wei, J., et al.: Emergent abilities of large language models. arXiv preprint arXiv:2206.07682 (2022)

  28. Wu, Z., Geiger, A., Potts, C., Goodman, N.D.: Interpretability at scale: identifying causal mechanisms in alpaca. arXiv preprint arXiv:2305.08809 (2023)

  29. Wu, Z., et al.: Exploring the trade-offs: Unified large language models vs local fine-tuned models for highly-specific radiology nli task. arXiv preprint arXiv:2304.09138 (2023)

  30. Yan, A., et al.: Radbert: adapting transformer-based language models to radiology. Radiol. Artif. Intell. 4(4), e210258 (2022)

    Article  Google Scholar 

  31. Zhao, L., et al.: When brain-inspired AI meets AGI. arXiv preprint arXiv:2303.15935 (2023)

  32. Zhong, T., et al.: Chatabl: abductive learning via natural language interaction with chatgpt. arXiv preprint arXiv:2304.11107 (2023)

  33. Zhou, C., et al.: A comprehensive survey on pretrained foundation models: a history from bert to chatgpt. arXiv preprint arXiv:2302.09419 (2023)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Z. et al. (2024). Tailoring Large Language Models to Radiology: A Preliminary Approach to LLM Adaptation for a Highly Specialized Domain. In: Cao, X., Xu, X., Rekik, I., Cui, Z., Ouyang, X. (eds) Machine Learning in Medical Imaging. MLMI 2023. Lecture Notes in Computer Science, vol 14348. Springer, Cham. https://doi.org/10.1007/978-3-031-45673-2_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45673-2_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45672-5

  • Online ISBN: 978-3-031-45673-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics