Automated Coarse-to-Fine Segmentation of Thoracic Duct Using Anatomy Priors and Topology-Guided Curved Planar Reformation | SpringerLink
Skip to main content

Automated Coarse-to-Fine Segmentation of Thoracic Duct Using Anatomy Priors and Topology-Guided Curved Planar Reformation

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2023)

Abstract

Recent studies have emphasized the importance of protecting thoracic duct during radiation therapy (RT), as dose distributions in thoracic duct may be associated with the development radiation-induced lymphopenia. Because of its thin/slim size, curved geometry and extremely poor (intensity) contrast of thoracic duct, manual delineation of thoracic duct in RT planning CT is time-consuming and with large inter-observer variations. In this work, we aim to automatically and accurately segment thoracic duct in RT planning CT, as the first attempt to tackle this clinically critical yet under-studied task. A two-stage coarse-to-fine segmentation approach is proposed. At the first stage, we automatically segment six chest organs and combine these organ predictions with the input planning CT to better infer and localize the thoracic duct. Given the coarse initial segmentation from first stage, we subsequently extract the topology-corrected centerline of initial thoracic duct segmentation at stage two where curved planar reformation (CPR) is applied to transform the planning CT into a new 3D volume representation that provides a spatially smoother reformation of thoracic duct in its elongated medial axis direction. Thus the CPR-transformed CT is employed as input to the second stage deep segmentation network, and the output segmentation mask is transformed back to the original image space, as the final segmentation. We evaluate our approach on 117 lung cancer patients with RT planning CT scans. Our approach significantly outperforms a strong baseline model based on nnUNet, by reducing 57% relative Hausdorff distance error (from 49.9 mm to 21.2 mm) and improving 1.8% absolute Jaccard Index.

P. Wang, P. Hu, J. Liu—Equal contribution.

D. Jin, F.-M. S. Kong—Co-senior author.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8464
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10581
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, X., et al.: A deep learning-based auto-segmentation system for organs-at-risk on whole-body computed tomography images for radiation therapy. Radiother. Oncol. 160, 175–184 (2021)

    Article  Google Scholar 

  2. Davuluri, R., et al.: Absolute lymphocyte count nadir during chemoradiation as a prognostic indicator of esophageal cancer survival outcomes. Int. J. Radiat. Oncol. Biol. Phys. 96(2), E177 (2016)

    Article  Google Scholar 

  3. Guo, D., et al.: Organ at risk segmentation for head and neck cancer using stratified learning and neural architecture search. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4223–4232 (2020)

    Google Scholar 

  4. Guo, D., et al.: DeepStationing: thoracic lymph node station parsing in CT scans using anatomical context encoding and key organ auto-search. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 3–12. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_1

    Chapter  Google Scholar 

  5. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: NNU-net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  6. Ji, Z., et al.: Continual segment: towards a single, unified and accessible continual segmentation model of 143 whole-body organs in CT scans. In: IEEE International Conference on Computer Vision (2023)

    Google Scholar 

  7. Jin, D., Guo, D., Ge, J., Ye, X., Lu, L.: Towards automated organs at risk and target volumes contouring: defining precision radiation therapy in the modern era. J. Natl. Can. Center 2, 306–313 (2022)

    Article  Google Scholar 

  8. Jin, D., et al.: Deeptarget: gross tumor and clinical target volume segmentation in esophageal cancer radiotherapy. Med. Image Anal. 68, 101909 (2021)

    Article  Google Scholar 

  9. Jin, D., Iyer, K.S., Chen, C., Hoffman, E.A., Saha, P.K.: A robust and efficient curve skeletonization algorithm for tree-like objects using minimum cost paths. Pattern Recogn. Lett. 76, 32–40 (2016)

    Article  Google Scholar 

  10. Jin, J.Y., et al.: A framework for modeling radiation induced lymphopenia in radiotherapy. Radiother. Oncol. 144, 105–113 (2020)

    Article  Google Scholar 

  11. Kanitsar, A., Fleischmann, D., Wegenkittl, R., Felkel, P., Groller, E.: CPR-curved planar reformation. IEEE (2002)

    Google Scholar 

  12. Kanitsar, A., Wegenkittl, R., Fleischmann, D., Groller, M.E.: Advanced curved planar reformation: flattening of vascular structures. IEEE (2003)

    Google Scholar 

  13. Kiyonaga, M., Mori, H., Matsumoto, S., Yamada, Y., Sai, M., Okada, F.: Thoracic duct and cisterna chyli: evaluation with multidetector row CT. Br. J. Radiol. 85(1016), 1052–1058 (2012)

    Article  Google Scholar 

  14. Lee, T.C., Kashyap, R.L., Chu, C.N.: Building skeleton models via 3-d medial surface axis thinning algorithms. CVGIP Graphical Models Image Process. 56(6), 462–478 (1994)

    Article  Google Scholar 

  15. Liu, J., et al.: Integrate sequence information of dose volume histogram in training LSTM-based deep learning model for lymphopenia diagnosis. Int. J. Radiat. Oncol. Biol. Phys. 111(3), e112–e113 (2021)

    Article  Google Scholar 

  16. Schnyder, P., et al.: CT of the thoracic duct. Eur. J. Radiol. 3(1), 18–23 (1983)

    MathSciNet  Google Scholar 

  17. Shi, F.: Deep learning empowered volume delineation of whole-body organs-at-risk for accelerated radiotherapy. Nat. Commun. 13(1), 6566 (2022)

    Article  Google Scholar 

  18. Siegel, R.L., Miller, K.D., Fuchs, H.E., Jemal, A.: Cancer statistics, 2022. CA Can. J. Clin. 72(1), 7–33 (2022)

    Article  Google Scholar 

  19. So, T.H., et al.: Lymphopenia and radiation dose to circulating lymphocytes with neoadjuvant chemoradiation in esophageal squamous cell carcinoma. Adv. Radiat. Oncol. 5(5), 880–888 (2020)

    Article  Google Scholar 

  20. Tang, C., et al.: Lymphopenia association with gross tumor volume and lung v5 and its effects on non-small cell lung cancer patient outcomes. Int. J. Radiat. Oncol. Biol. Phys. 89(5), 1084–1091 (2014)

    Article  Google Scholar 

  21. Tang, H., et al.: Clinically applicable deep learning framework for organs at risk delineation in CT images. Nat. Mach. Intell. 1(10), 480–491 (2019)

    Article  MathSciNet  Google Scholar 

  22. Tyldesley, S., Boyd, C., Schulze, K., Walker, H., Mackillop, W.J.: Estimating the need for radiotherapy for lung cancer: an evidence-based, epidemiologic approach. Int. J. Radiat. Oncol. Biol. Phys. 49(4), 973–985 (2001)

    Article  Google Scholar 

  23. Wang, P., et al.: Accurate airway tree segmentation in ct scans via anatomy-aware multi-class segmentation and topology-guided iterative learning. arXiv preprint arXiv:2306.09116 (2023)

  24. Xu, C., et al.: The impact of the effective dose to immune cells on lymphopenia and survival of esophageal cancer after chemoradiotherapy. Radiother. Oncol. 146, 180–186 (2020)

    Article  Google Scholar 

  25. Ye, X., et al.: Comprehensive and clinically accurate head and neck cancer organs-at-risk delineation on a multi-institutional study. Nat. Commun. 13(1), 6137 (2022)

    Article  MathSciNet  Google Scholar 

  26. Zhu, Z., et al.: Lymph node gross tumor volume detection and segmentation via distance-based gating using 3D CT/PET imaging in radiotherapy. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 753–762. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_73

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiali Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, P. et al. (2024). Automated Coarse-to-Fine Segmentation of Thoracic Duct Using Anatomy Priors and Topology-Guided Curved Planar Reformation. In: Cao, X., Xu, X., Rekik, I., Cui, Z., Ouyang, X. (eds) Machine Learning in Medical Imaging. MLMI 2023. Lecture Notes in Computer Science, vol 14348. Springer, Cham. https://doi.org/10.1007/978-3-031-45673-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45673-2_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45672-5

  • Online ISBN: 978-3-031-45673-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics