Abstract
Nowadays, more and more resource-constrained individuals and corporations tend to outsource their data and machine learning tasks to cloud servers, enjoying high-quality data storage and computing services ubiquitously. However, outsourcing sensitive data can bring data security and privacy issues, arousing public concerns. In this work, we propose an efficient privacy-preserving outsourced scheme of K-means clustering on encrypted data in the twin-cloud model using the paradigm of secret sharing. The state-of-the-art outsourced K-means clustering scheme using fully homomorphic encryption is efficient but not secure enough. To better solve this problem, we utilize the kd-tree data structure and design a set of secure protocols, presenting a new scheme that is almost as efficient as the state-of-the-art schemes but more secure. In our scheme, the clustering process is performed by two cloud servers without leaking any intermediate information. We provide formal security analyses and evaluate the performance of our scheme on both synthetic and real-world datasets. The experiment results show that our scheme is efficient and practical.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Masulli, F., Schenone, A.: A fuzzy clustering based segmentation system as support to diagnosis in medical imaging. Artif. Intell. Med. 16(2), 129–147 (1999)
Chaturvedi, A., Carroll, J.D., Green, P.E., Rotondo, J.A.: A feature-based approach to market segmentation via overlapping k-centroids clustering. J. Mark. Res. 34(3), 370–377 (1997)
Wu, W., Liu, J., Wang, H., Hao, J., Xian, M.: Secure and efficient outsourced k-means clustering using fully homomorphic encryption with ciphertext packing technique. IEEE Trans. Knowl. Data Eng. 33(10), 3424–3437 (2020)
Mohassel, P., Rosulek, M., Trieu, N.: Practical privacy-preserving k-means clustering. Proc. Priv. Enh. Technol. 2020(4), 414–433 (2020)
Naeem, M., Asghar, S.: KEGG metabolic reaction network data set. The UCI KDD Archive (2011)
Rong, H., Wang, H., Liu, J., Hao, J., Xian, M.: Privacy-preserving-means clustering under multiowner setting in distributed cloud environments. Secur. Commun. Netw. 2017 (2017)
Rao, F.-Y., Samanthula, B.K., Bertino, E., Yi, X., Liu, D.: Privacy-preserving and outsourced multi-user k-means clustering. In: 2015 IEEE Conference on Collaboration and Internet Computing (CIC), pp. 80–89. IEEE (2015)
Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 881–892 (2002)
Rathee, D., et al.: Cryptflow2: practical 2-party secure inference. In: Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security, pp. 325–342 (2020)
Gheid, Z., Challal, Y.: Efficient and privacy-preserving k-means clustering for big data mining. In: 2016 IEEE Trustcom/BigDataSE/ISPA, pp. 791–798. IEEE (2016)
Jäschke, A., Armknecht, F.: Unsupervised machine learning on encrypted data. In: Cid, C., Jacobson, M., Jr. (eds.) SAC 2018. LNCS, vol. 11349, pp. 453–478. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-10970-7_21
Liu, X., et al.: Outsourcing two-party privacy preserving k-means clustering protocol in wireless sensor networks. In: 2015 11th International Conference on Mobile Ad-hoc and Sensor Networks (MSN), pp. 124–133. IEEE (2015)
Liu, D., Bertino, E., Yi, X.: Privacy of outsourced k-means clustering. In: Proceedings of the 9th ACM Symposium on Information, Computer and Communications Security, pp. 123–134 (2014)
Kim, H.-J., Chang, J.-W.: A privacy-preserving k-means clustering algorithm using secure comparison protocol and density-based center point selection. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 928–931. IEEE (2018)
Kargupta, H., Datta, S., Wang, Q., Sivakumar, K.: On the privacy preserving properties of random data perturbation techniques. In: Third IEEE International Conference on Data Mining, pp. 99–106. IEEE (2003)
Doganay, M.C., Pedersen, T.B., Saygin, Y., Savaş, E., Levi, A.: Distributed privacy preserving k-means clustering with additive secret sharing. In: Proceedings of the 2008 International Workshop on Privacy and Anonymity in Information Society, pp. 3–11 (2008)
Lin, Z., Jaromczyk, J.W.: Privacy preserving two-party k-means clustering over vertically partitioned dataset. In: Proceedings of 2011 IEEE International Conference on Intelligence and Security Informatics, pp. 187–191. IEEE (2011)
Patel, S.J., Punjani, D., Jinwala, D.C.: An efficient approach for privacy preserving distributed clustering in semi-honest model using elliptic curve cryptography. Int. J. Netw. Secur. 17(3), 328–339 (2015)
Chen, X.: Introduction to secure outsourcing computation. Synth. Lect. Inf. Secur. Priv. Trust 8(2), 1–93 (2016)
Goldreich, O.: Encryption schemes. The foundations of cryptography, vol. 2 (2004)
Bogdanov, D., Laur, S., Willemson, J.: Sharemind: a framework for fast privacy-preserving computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp. 192–206. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88313-5_13
Bogdanov, D., Niitsoo, M., Toft, T., Willemson, J.: High-performance secure multi-party computation for data mining applications. Int. J. Inf. Secur. 11(6), 403–418 (2012)
Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_34
El Malki, N., Ravat, F., Teste, O.: KD-means: clustering method for massive data based on KD-tree. In: 22nd International Workshop on Design, Optimization, Languages and Analytical Processing of Big Data-DOLAP 2020, vol. 2572. CEUR-WS (2020)
Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)
Liu, L., et al.: Toward highly secure yet efficient KNN classification scheme on outsourced cloud data. IEEE Internet Things J. 6(6), 9841–9852 (2019)
Cheng, K., Hou, Y., Wang, L.: Secure similar sequence query on outsourced genomic data. In: Proceedings of the 2018 on Asia Conference on Computer and Communications Security, pp. 237–251 (2018)
Liu, X., Deng, R.H., Choo, K.-K.R., Weng, J.: An efficient privacy-preserving outsourced calculation toolkit with multiple keys. IEEE Trans. Inf. Forensics Secur. 11(11), 2401–2414 (2016)
Fränti, P., Sieranoja, S.: K-means properties on six clustering benchmark datasets. Appl. Intell. 48(12), 4743–4759 (2018)
Beimel, A.: Secret-sharing schemes: a survey. In: Chee, Y.M., Guo, Z., Ling, S., Shao, F., Tang, Y., Wang, H., Xing, C. (eds.) IWCC 2011. LNCS, vol. 6639, pp. 11–46. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20901-7_2
Papernot, N., McDaniel, P., Sinha, A., Wellman, M.P.: SoK: security and privacy in machine learning. In: 2018 IEEE European Symposium on Security and Privacy (EuroS&P), pp. 399–414. IEEE (2018)
Xu, R., Wunsch, D.: Survey of clustering algorithms. IEEE Trans. Neural Networks 16(3), 645–678 (2005)
Hegde, A., Möllering, H., Schneider, T., Yalame, H.: SoK: efficient privacy-preserving clustering. Proc. Priv. Enh. Technol. 2021(4), 225–248 (2021)
Bozdemir, B., Canard, S., Ermis, O., Möllering, H., Önen, M., Schneider, T.: Privacy-preserving density-based clustering. In: Proceedings of the 2021 ACM Asia Conference on Computer and Communications Security, pp. 658–671 (2021)
Boldyreva, A., Tang, T.: Privacy-preserving approximate k-nearest-neighbors search that hides access, query and volume patterns. Cryptology ePrint Archive (2021)
Acknowledgment
This work is supported by the National Nature Science Foundation of China (No. 62102429, No. 62072466, No. 62102430, No. 62102440), Natural Science Foundation of Hunan Province, China (Grant No. 2021JJ40688), the NUDT Grants (No. ZK19-38, No. ZK22-50).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Deng, Y., Liu, L., Fu, S., Luo, Y., Wu, W., Wang, S. (2023). Privacy Preserving Outsourced K-means Clustering Using Kd-tree. In: Zhang, M., Au, M.H., Zhang, Y. (eds) Provable and Practical Security. ProvSec 2023. Lecture Notes in Computer Science, vol 14217. Springer, Cham. https://doi.org/10.1007/978-3-031-45513-1_19
Download citation
DOI: https://doi.org/10.1007/978-3-031-45513-1_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-45512-4
Online ISBN: 978-3-031-45513-1
eBook Packages: Computer ScienceComputer Science (R0)