Feasibility of Universal Anomaly Detection Without Knowing the Abnormality in Medical Images | SpringerLink
Skip to main content

Feasibility of Universal Anomaly Detection Without Knowing the Abnormality in Medical Images

  • Conference paper
  • First Online:
Medical Image Learning with Limited and Noisy Data (MILLanD 2023)

Abstract

Many anomaly detection approaches, especially deep learning methods, have been recently developed to identify abnormal image morphology by only employing normal images during training. Unfortunately, many prior anomaly detection methods were optimized for a specific “known” abnormality (e.g., brain tumor, bone fraction, cell types). Moreover, even though only the normal images were used in the training process, the abnormal images were often employed during the validation process (e.g., epoch selection, hyper-parameter tuning), which might leak the supposed “unknown” abnormality unintentionally. In this study, we investigated these two essential aspects regarding universal anomaly detection in medical images by (1) comparing various anomaly detection methods across four medical datasets, (2) investigating the inevitable but often neglected issues on how to unbiasedly select the optimal anomaly detection model during the validation phase using only normal images, and (3) proposing a simple decision-level ensemble method to leverage the advantage of different kinds of anomaly detection without knowing the abnormality. The results of our experiments indicate that none of the evaluated methods consistently achieved the best performance across all datasets. Our proposed method enhanced the robustness of performance in general (average AUC 0.956).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akcay, S., Atapour-Abarghouei, A., Breckon, T.P.: GANomaly: semi-supervised anomaly detection via adversarial training. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11363, pp. 622–637. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20893-6_39

    Chapter  Google Scholar 

  2. Akçay, S., Atapour-Abarghouei, A., Breckon, T.P.: Skip-GANomaly: skip connected and adversarially trained encoder-decoder anomaly detection. In: 2019 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2019)

    Google Scholar 

  3. An, J., Cho, S.: Variational autoencoder based anomaly detection using reconstruction probability. Special Lect. IE 2(1), 1–18 (2015)

    Google Scholar 

  4. Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: MVTec AD-a comprehensive real-world dataset for unsupervised anomaly detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9592–9600 (2019)

    Google Scholar 

  5. Cai, Y., Chen, H., Yang, X., Zhou, Y., Cheng, K.T.: Dual-distribution discrepancy for anomaly detection in chest X-rays. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol. 13433, pp. 584–593. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16437-8_56

  6. Chen, Y., Tian, Y., Pang, G., Carneiro, G.: Deep one-class classification via interpolated gaussian descriptor. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 383–392 (2022)

    Google Scholar 

  7. Gong, D., et al.: Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1705–1714 (2019)

    Google Scholar 

  8. Kascenas, A., Pugeault, N., O’Neil, A.Q.: Denoising autoencoders for unsupervised anomaly detection in brain MRI. In: International Conference on Medical Imaging with Deep Learning, pp. 653–664. PMLR (2022)

    Google Scholar 

  9. Li, K.L., Huang, H.K., Tian, S.F., Xu, W.: Improving one-class SVM for anomaly detection. In: Proceedings of the 2003 International Conference on Machine Learning and Cybernetics (IEEE Cat. No. 03EX693), vol. 5, pp. 3077–3081. IEEE (2003)

    Google Scholar 

  10. Litjens, G., et al.: 1399 H &E-stained sentinel lymph node sections of breast cancer patients: the CAMELYON dataset. GigaScience 7(6), giy065 (2018)

    Article  MathSciNet  Google Scholar 

  11. Nickparvar, M.: Brain tumor MRI dataset (2021). https://doi.org/10.34740/KAGGLE/DSV/2645886 , https://www.kaggle.com/dsv/2645886

  12. Pirnay, J., Chai, K.: Inpainting transformer for anomaly detection. In: Sclaroff, S., Distante, C., Leo, M., Farinella, G.M., Tombari, F. (eds.) Image Analysis and Processing – ICIAP 2022. ICIAP 2022. Lecture Notes in Computer Science, vol. 13232, pp. 394–406. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06430-2_33

  13. Reiss, T., Cohen, N., Bergman, L., Hoshen, Y.: Panda: adapting pretrained features for anomaly detection and segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2806–2814 (2021)

    Google Scholar 

  14. Ruff, L., et al.: Deep one-class classification. In: International Conference on Machine Learning, pp. 4393–4402. PMLR (2018)

    Google Scholar 

  15. Ruff, L., et al.: Deep one-class classification. In: Proceedings of the 35th International Conference on Machine Learning, vol. 80, pp. 4393–4402 (2018)

    Google Scholar 

  16. Salehi, M., Mirzaei, H., Hendrycks, D., Li, Y., Rohban, M.H., Sabokrou, M.: A unified survey on anomaly, novelty, open-set, and out-of-distribution detection: solutions and future challenges. arXiv preprint arXiv:2110.14051 (2021)

  17. Shvetsova, N., Bakker, B., Fedulova, I., Schulz, H., Dylov, D.V.: Anomaly detection in medical imaging with deep perceptual autoencoders. IEEE Access 9, 118571–118583 (2021)

    Article  Google Scholar 

  18. Yang, J., Xu, R., Qi, Z., Shi, Y.: Visual anomaly detection for images: a survey. arXiv preprint arXiv:2109.13157 (2021)

  19. Zehnder, P., Feng, J., Fuji, R.N., Sullivan, R., Hu, F.: Multiscale generative model using regularized skip-connections and perceptual loss for anomaly detection in toxicologic histopathology. J. Pathol. Inf. 13, 100102 (2022)

    Article  Google Scholar 

  20. Zhang, Y., Sun, Y., Li, H., Zheng, S., Zhu, C., Yang, L.: Benchmarking the robustness of deep neural networks to common corruptions in digital pathology. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol. 13432, pp. 242–252. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16434-7_24

Download references

Acknowledgements

This work is supported by the Leona M. and Harry B. Helmsley Charitable Trust grant G-1903-03793, NSF CAREER 1452485.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuankai Huo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cui, C. et al. (2023). Feasibility of Universal Anomaly Detection Without Knowing the Abnormality in Medical Images. In: Xue, Z., et al. Medical Image Learning with Limited and Noisy Data. MILLanD 2023. Lecture Notes in Computer Science, vol 14307. Springer, Cham. https://doi.org/10.1007/978-3-031-44917-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44917-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47196-4

  • Online ISBN: 978-3-031-44917-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics