Abstract
Continual learning is an increasingly studied field, aiming at regulating catastrophic forgetting for online machine learning tasks. In this article, we propose a prediction error measure for continual learning, to detect concept drift induced from learned data input before the learning step. In addition, we check this measure’s ability for characterization of the drift. For these purposes, we propose an algorithm to compute the proposed measure on a data stream while also estimating concept drift. Then, we calculate the correlation coefficients between this estimate and our measurement, using time series analysis. To validate our proposal, we base our experiments on simulated streams of metadata collected from an industrial dataset corresponding to real conversation data. The results show that the proposed measure constitutes a reliable criterion for concept drift detection. They also show that a characterization of the drift relative to components of the stream is possible thanks to the proposed measure.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Agrahari, S., Singh, A.K.: Concept drift detection in data stream mining: a literature review. J. King Saud Univ. Comput. Inf. Sci. (2021). https://doi.org/10.1016/j.jksuci.2021.11.006
Aljundi, R., et al.: Online Continual Learning with Maximally Interfered Retrieval. arXiv:1908.04742 (2019)
Arrieta, A.B., et al.: Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI (2019)
Baena-Garcıa, M., Gavalda, R., Morales-Bueno, R.: Early drift detection method. In: Fourth International Workshop on Knowledge Discovery from Data Streams, vol. 6, pp. 77–86 (2006)
Bayram, F., Ahmed, B.S., Kassler, A.: From Concept Drift to Model Degradation: An Overview on Performance-Aware Drift Detectors (2022). https://doi.org/10.48550/arXiv.2203.11070
Biesialska, M., Biesialska, K., Costa-jussà, M.R.: Continual lifelong learning in natural language processing: a survey. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 6523–6541 (2020). https://doi.org/10.18653/v1/2020.coling-main.574
Bifet, A., Gavaldà, R.: Learning from time-changing data with adaptive windowing. In: Proceedings of the 2007 SIAM International Conference on Data Mining (SDM), pp. 443–448. Society for Industrial and Applied Mathematics (2007). https://doi.org/10.1137/1.9781611972771.42
Bifet, A., et al.: MOA: massive online analysis, a framework for stream classification and clustering. In: Proceedings of the First Workshop on Applications of Pattern Analysis, pp. 44–50 (2010)
Bracewell, R.: Pentagram notation for cross correlation. In: The Fourier Transform and Its Applications, vol. 46, p. 243. McGraw-Hill, New York (1965)
Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift detection. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp. 286–295. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28645-5_29
Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation. ACM Comput. Surv. 46(4), 44:1–44:37 (2014). https://doi.org/10.1145/2523813
Gupta, U., Babu, M., Ayoub, R., Kishinevsky, M., Paterna, F., Ogras, U.Y.: STAFF: online learning with stabilized adaptive forgetting factor and feature selection algorithm. In: Proceedings of the 55th Annual Design Automation Conference, San Francisco, California, pp. 1–6. ACM (2018). https://doi.org/10.1145/3195970.3196122
Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, California, pp. 97–106. ACM (2001). https://doi.org/10.1145/502512.502529
Kemker, R., Kanan, C.: FearNet: brain-inspired model for incremental learning. In: International Conference on Learning Representations (2022)
Kirkpatrick, J., et al.: Overcoming catastrophic forgetting in neural networks. Proc. Natl. Acad. Sci. 114(13), 3521–3526 (2017). https://doi.org/10.1073/pnas.1611835114
Li, X., Zhou, Y., Wu, T., Socher, R., Xiong, C.: Learn to grow: a continual structure learning framework for overcoming catastrophic forgetting. In: International Conference in Machine Learning, p. 10 (2019)
Lin, J.: The lambda and the kappa. IEEE Internet Comput. 21(5), 60–66 (2017)
Lopes, R.H.C.: Kolmogorov-Smirnov test. In: Lovric, M. (ed.) International Encyclopedia of Statistical Science, pp. 718–720. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-04898-2_326
Masana, M., Tuytelaars, T., van de Weijer, J.: Ternary Feature Masks: Zero-forgetting for task-incremental learning. arXiv:2001.08714 (2021)
McCloskey, M., Cohen, N.J.: Catastrophic interference in connectionist networks: the sequential learning problem. In: Psychology of Learning and Motivation, vol. 24, pp. 109–165. Elsevier (1989). https://doi.org/10.1016/S0079-7421(08)60536-8
Nguyen, C.V., Achille, A., Lam, M., Hassner, T., Mahadevan, V., Soatto, S.: Toward Understanding Catastrophic Forgetting in Continual Learning. arXiv:1908.01091 (2019)
Papoulis, A.: The fourier integral and its applications. Polytechnic Institute of Brooklyn, McCraw-Hill Book Company Inc., USA (1962). ISBN 67-048447-3
Raab, C., Heusinger, M., Schleif, F.M.: Reactive soft prototype computing for concept drift streams. Neurocomputing 416, 340–351 (2020). https://doi.org/10.1016/j.neucom.2019.11.111
Ramasesh, V.V., Dyer, E., Raghu, M.: Anatomy of Catastrophic Forgetting: Hidden Representations and Task Semantics. arXiv:2007.07400 (2020)
Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: iCaRL: incremental classifier and representation learning. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, pp. 5533–5542. IEEE (2017). https://doi.org/10.1109/CVPR.2017.587
Ring, M.B.: Continual Learning in Reinforcement Environments. GMD-Bericht (1994)
Shin, H., Lee, J.K., Kim, J., Kim, J.: Continual Learning with Deep Generative Replay. arXiv:1705.08690 (2017)
Tjoa, E., Guan, C.: A survey on explainable artificial intelligence (XAI): toward medical XAI. IEEE Trans. Neural Netw. Learn. Syst. 32(11), 4793–4813 (2021). https://doi.org/10.1109/TNNLS.2020.3027314
Wang, S., Choi, Y., Chen, J., El-Khamy, M., Henao, R.: Toward Sustainable Continual Learning: Detection and Knowledge Repurposing of Similar Tasks (2022)
Yu, H., Webb, G.I.: Adaptive online extreme learning machine by regulating forgetting factor by concept drift map. Neurocomputing 343, 141–153 (2019). https://doi.org/10.1016/j.neucom.2018.11.098
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bugnicourt, A., Mokadem, R., Morvan, F., Bebeshina, N. (2023). An Error-Based Measure for Concept Drift Detection and Characterization. In: Sellmann, M., Tierney, K. (eds) Learning and Intelligent Optimization. LION 2023. Lecture Notes in Computer Science, vol 14286. Springer, Cham. https://doi.org/10.1007/978-3-031-44505-7_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-44505-7_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-44504-0
Online ISBN: 978-3-031-44505-7
eBook Packages: Computer ScienceComputer Science (R0)