NeuralODE-Based Latent Trajectories into AutoEncoder Architecture for Surrogate Modelling of Parametrized High-Dimensional Dynamical Systems | SpringerLink
Skip to main content

NeuralODE-Based Latent Trajectories into AutoEncoder Architecture for Surrogate Modelling of Parametrized High-Dimensional Dynamical Systems

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2023 (ICANN 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14259))

Included in the following conference series:

  • 1334 Accesses

Abstract

Data-driven modelling has recently gained interest in the scientific computing community with the purpose of emulating complex large scale systems. Surrogate modelling based on autoencoders (AEs) is widely employed across several engineering fields to model the time-history response of nonlinear high-dimensional dynamical systems from a set of design parameters. In this direction, this paper introduces an efficient deep learning scheme consisting of a two-steps autoencoding framework in conjunction with Neural Ordinary Differential Equations (NODEs), a novel approach for modelling time-continuous dynamics. The proposition aims at alleviating the drawbacks of similar methodologies employed for the same task, namely Parametrized NODE (PNODE) and the two-steps AE-based surrogate models, to provide a more powerful predictive tool. The effectiveness of the conceived methodology has been assessed by considering the task of emulating the spatiotemporal dynamics described by the 1D viscous Burgers’ equation. The outcomes of our empirical analysis demonstrate that our approach outperforms the alternative state-of-the-art models in terms of predictive capability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10295
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12869
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Burgers, J.: A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech. 1, 171–199 (1948)

    Article  MathSciNet  Google Scholar 

  2. Chalvidal, M., Ricci, M., VanRullen, R., Serre, T.: Neural optimal control for representation learning. arXiv abs/2006.09545 (2020)

    Google Scholar 

  3. Chen, R.T.Q., Rubanova, Y., Bettencourt, J., Duvenaud, D.K.: Neural ordinary differential equations. In: Advances in Neural Information Processing Systems, vol. 31. Curran Associates, Inc. (2018)

    Google Scholar 

  4. Chen, X., et al.: Forecasting the outcome of spintronic experiments with neural ordinary differential equations. Nat. Commun. 13(1), 1016 (2022)

    Article  Google Scholar 

  5. Dikeman, H.E., Zhang, H., Yang, S.: Stiffness-reduced neural ode models for data-driven reduced-order modeling of combustion chemical kinetics. In: AIAA SCITECH 2022 Forum, p. 0226 (2022)

    Google Scholar 

  6. Dupont, E., Doucet, A., Teh, Y.W.: Augmented neural odes. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  7. Dupuis, R., Jouhaud, J.C., Sagaut, P.: Surrogate modeling of aerodynamic simulations for multiple operating conditions using machine learning. AIAA J. 56(9), 3622–3635 (2018)

    Article  Google Scholar 

  8. Fresca, S., Dede’, L., Manzoni, A.: A comprehensive deep learning-based approach to reduced order modeling of nonlinear time-dependent parametrized PDEs. J. Sci. Comput. 87, 1–36 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gergs, T., Borislavov, B., Trieschmann, J.: Efficient plasma-surface interaction surrogate model for sputtering processes based on autoencoder neural networks. J. Vac. Sci. Technol. B 40(1), 012802 (2022)

    Article  Google Scholar 

  10. Gonzalez, F.J., Balajewicz, M.: Deep convolutional recurrent autoencoders for learning low-dimensional feature dynamics of fluid systems. arXiv preprint arXiv:1808.01346 (2018)

  11. Guo, M., Hesthaven, J.S.: Reduced order modeling for nonlinear structural analysis using gaussian process regression. Comput. Methods Appl. Mech. Eng. 341, 807–826 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hasegawa, K., Fukami, K., Murata, T., Fukagata, K.: Machine-learning-based reduced-order modeling for unsteady flows around bluff bodies of various shapes. Theoret. Comput. Fluid Dyn. 34, 367–383 (2020)

    Article  MathSciNet  Google Scholar 

  13. Hesthaven, J., Ubbiali, S.: Non-intrusive reduced order modeling of nonlinear problems using neural networks. J. Comput. Phys. 363, 55–78 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015)

    Google Scholar 

  15. Lazzara, M., Chevalier, M., Colombo, M., Garcia, J.G., Lapeyre, C., Teste, O.: Surrogate modelling for an aircraft dynamic landing loads simulation using an LSTM autoencoder-based dimensionality reduction approach. Aerosp. Sci. Technol. 126, 107629 (2022)

    Article  Google Scholar 

  16. Lee, K., Parish, E.J.: Parameterized neural ordinary differential equations: applications to computational physics problems. Proc. Roy. Soc. A Math. Phys. Eng. Sci. 477(2253), 20210162 (2021)

    MathSciNet  Google Scholar 

  17. Maulik, R., Lusch, B., Balaprakash, P.: Reduced-order modeling of advection-dominated systems with recurrent neural networks and convolutional autoencoders. Phys. Fluids 33(3), 037106 (2021)

    Article  Google Scholar 

  18. Maulik, R., Mohan, A., Lusch, B., Madireddy, S., Balaprakash, P., Livescu, D.: Time-series learning of latent-space dynamics for reduced-order model closure. Physica D 405, 132368 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Milan, P.J., Torelli, R., Lusch, B., Magnotti, G.: Data-driven model reduction of multiphase flow in a single-hole automotive injector. At. Sprays 30(6) (2020)

    Google Scholar 

  20. Na, J., Jeon, K., Lee, W.B.: Toxic gas release modeling for real-time analysis using variational autoencoder with convolutional neural networks. Chem. Eng. Sci. 181, 68–78 (2018)

    Article  Google Scholar 

  21. Nakamura, T., Fukami, K., Hasegawa, K., Nabae, Y., Fukagata, K.: Convolutional neural network and long short-term memory based reduced order surrogate for minimal turbulent channel flow. Phys. Fluids 33(2), 025116 (2021)

    Article  Google Scholar 

  22. Nikolopoulos, S., Kalogeris, I., Papadopoulos, V.: Non-intrusive surrogate modeling for parametrized time-dependent partial differential equations using convolutional autoencoders. Eng. Appl. Artif. Intell. 109, 104652 (2022)

    Article  Google Scholar 

  23. Portwood, G.D., et al.: Turbulence forecasting via neural ODE. arXiv preprint arXiv:1911.05180 (2019)

  24. Rahman, S.M., Pawar, S., San, O., Rasheed, A., Iliescu, T.: Nonintrusive reduced order modeling framework for quasigeostrophic turbulence. Phys. Rev. E 100, 053306 (2019)

    Article  MathSciNet  Google Scholar 

  25. Raviv, L., Lupyan, G., Green, S.C.: How variability shapes learning and generalization. Trends Cogn. Sci. 26(6), 462–483 (2022)

    Article  Google Scholar 

  26. Rubanova, Y., Chen, R.T., Duvenaud, D.K.: Latent ordinary differential equations for irregularly-sampled time series. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  27. Salvador, M., Dede, L., Manzoni, A.: Non intrusive reduced order modeling of parametrized PDEs by kernel pod and neural networks. Comput. Math. Appl. 104, 1–13 (2021)

    MathSciNet  MATH  Google Scholar 

  28. Sekar, V., Jiang, Q., Shu, C., Khoo, B.C.: Fast flow field prediction over airfoils using deep learning approach. Phys. Fluids 31(5), 057103 (2019)

    Article  Google Scholar 

  29. Shankar, V., et al.: Learning non-linear spatio-temporal dynamics with convolutional neural odes. In: Third Workshop on Machine Learning and the Physical Sciences (NeurIPS 2020) (2020)

    Google Scholar 

  30. Sharif, S.A., Hammad, A., Eshraghi, P.: Generation of whole building renovation scenarios using variational autoencoders. Energy Build. 230, 110520 (2021)

    Article  Google Scholar 

  31. Tenenbaum, J.B., Griffiths, T.L.: Generalization, similarity, and bayesian inference. Behav. Brain Sci. 24(4), 629640 (2001)

    Google Scholar 

  32. Thangamuthu, A., Kumar, G., Bishnoi, S., Bhattoo, R., Krishnan, N.M.A., Ranu, S.: Unravelling the performance of physics-informed graph neural networks for dynamical systems. In: Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (2022)

    Google Scholar 

  33. Wang, J., He, C., Li, R., Chen, H., Zhai, C., Zhang, M.: Flow field prediction of supercritical airfoils via variational autoencoder based deep learning framework. Phys. Fluids 33(8), 086108 (2021)

    Article  Google Scholar 

  34. Wang, Z., Xiao, D., Fang, F., Govindan, R., Pain, C.C., Guo, Y.: Model identification of reduced order fluid dynamics systems using deep learning. Int. J. Numer. Meth. Fluids 86(4), 255–268 (2018)

    Article  MathSciNet  Google Scholar 

  35. Xu, J., Duraisamy, K.: Multi-level convolutional autoencoder networks for parametric prediction of spatio-temporal dynamics. Comput. Methods Appl. Mech. Eng. 372, 113379 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

This work has been supported by Airbus Operations SAS and the French National Agency for Technological Research (ANRT) within the CIFRE framework (grant N\(^o\) 2019/1815).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Lazzara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lazzara, M., Chevalier, M., Lapeyre, C., Teste, O. (2023). NeuralODE-Based Latent Trajectories into AutoEncoder Architecture for Surrogate Modelling of Parametrized High-Dimensional Dynamical Systems. In: Iliadis, L., Papaleonidas, A., Angelov, P., Jayne, C. (eds) Artificial Neural Networks and Machine Learning – ICANN 2023. ICANN 2023. Lecture Notes in Computer Science, vol 14259. Springer, Cham. https://doi.org/10.1007/978-3-031-44223-0_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44223-0_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44222-3

  • Online ISBN: 978-3-031-44223-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics