Abstract
Traffic classification is a crucial technology for ensuring Quality of Service (QoS) in network services and network security management. Deep learning has shown great promise in this area, particularly for classifying encrypted traffic. However, the significant number of samples required for training models presents a challenge. In this paper, we propose a multi-task learning and Federated Learning approach for training multi-task models for encrypted traffic classification in a privacy-protected, multi-enterprise setting. Our proposed two-stage federated multi-task learning scheme, pFedDAMT, aims to address data heterogeneity by first obtaining a global multi-task model that performs well for all tasks and then personalizing and fine-tuning the model with each enterprise’s dataset to generate personalized models. Our experiments demonstrate that pFedDAMT improves prediction accuracy by an average of 1.58% compared to other schemes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chen, Z., Badrinarayanan, V., Lee, C.Y., Rabinovich, A.: Gradnorm: gradient normalization for adaptive loss balancing in deep multitask networks. In: International Conference on Machine Learning, pp. 794–803. PMLR (2018)
Chen, Z., et al.: Just pick a sign: optimizing deep multitask models with gradient sign dropout. Adv. Neural. Inf. Process. Syst. 33, 2039–2050 (2020)
Draper-Gil, G., Lashkari, A.H., Mamun, M.S.I., Ghorbani, A.A.: Characterization of encrypted and VPN traffic using time-related. In: Proceedings of the 2nd International Conference on Information Systems Security and Privacy (ICISSP), pp. 407–414 (2016)
Fallah, A., Mokhtari, A., Ozdaglar, A.: Personalized federated learning: a meta-learning approach. arXiv preprint arXiv:2002.07948 (2020)
Huang, H., Deng, H., Chen, J., Han, L., Wang, W.: Automatic multi-task learning system for abnormal network traffic detection. Int. J. Emerg. Technol. Learn. 13(4) (2018)
Kendall, A., Gal, Y., Cipolla, R.: Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7482–7491 (2018)
Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated optimization in heterogeneous networks. Proc. Mach. Learn. Syst. 2, 429–450 (2020)
Lin, X., Xiong, G., Gou, G., Li, Z., Shi, J., Yu, J.: ET-BERT: a contextualized datagram representation with pre-training transformers for encrypted traffic classification. In: Proceedings of the ACM Web Conference 2022, pp. 633–642 (2022)
Liu, B., Liu, X., Jin, X., Stone, P., Liu, Q.: Conflict-averse gradient descent for multi-task learning. In: Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances in Neural Information Processing Systems (2021)
Liu, C., He, L., Xiong, G., Cao, Z., Li, Z.: FS-Net: a flow sequence network for encrypted traffic classification. In: IEEE INFOCOM 2019-IEEE Conference on Computer Communications, pp. 1171–1179. IEEE (2019)
Liu, S., Johns, E., Davison, A.J.: End-to-end multi-task learning with attention. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1871–1880 (2019)
Lotfollahi, M., Jafari Siavoshani, M., Shirali Hossein Zade, R., Saberian, M.: Deep packet: a novel approach for encrypted traffic classification using deep learning. Soft Comput. 24(3), 1999–2012 (2020)
McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)
Rezaei, S., Liu, X.: Deep learning for encrypted traffic classification: an overview. IEEE Commun. Mag. 57(5), 76–81 (2019)
T Dinh, C., Tran, N., Nguyen, J.: Personalized federated learning with moreau envelopes. In: Advances in Neural Information Processing Systems, vol. 33, pp. 21394–21405 (2020)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Wang, W., Zhu, M., Wang, J., Zeng, X., Yang, Z.: End-to-end encrypted traffic classification with one-dimensional convolution neural networks. In: 2017 IEEE International Conference on Intelligence and Security Informatics (ISI), pp. 43–48. IEEE (2017)
Wang, W., Zhu, M., Zeng, X., Ye, X., Sheng, Y.: Malware traffic classification using convolutional neural network for representation learning. In: 2017 International Conference on Information Networking (ICOIN), pp. 712–717. IEEE (2017)
Wang, Z., Tsvetkov, Y., Firat, O., Cao, Y.: Gradient vaccine: investigating and improving multi-task optimization in massively multilingual models. In: International Conference on Learning Representations (2021)
Yu, T., Kumar, S., Gupta, A., Levine, S., Hausman, K., Finn, C.: Gradient surgery for multi-task learning. Adv. Neural. Inf. Process. Syst. 33, 5824–5836 (2020)
Zhao, Y., Chen, J., Wu, D., Teng, J., Yu, S.: Multi-task network anomaly detection using federated learning. In: Proceedings of the Tenth International Symposium on Information and Communication Technology, pp. 273–279 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Guan, X., Du, R., Wang, X., Qu, H. (2023). A Personalized Federated Multi-task Learning Scheme for Encrypted Traffic Classification. In: Iliadis, L., Papaleonidas, A., Angelov, P., Jayne, C. (eds) Artificial Neural Networks and Machine Learning – ICANN 2023. ICANN 2023. Lecture Notes in Computer Science, vol 14256. Springer, Cham. https://doi.org/10.1007/978-3-031-44213-1_22
Download citation
DOI: https://doi.org/10.1007/978-3-031-44213-1_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-44212-4
Online ISBN: 978-3-031-44213-1
eBook Packages: Computer ScienceComputer Science (R0)