A Personalized Federated Multi-task Learning Scheme for Encrypted Traffic Classification | SpringerLink
Skip to main content

A Personalized Federated Multi-task Learning Scheme for Encrypted Traffic Classification

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2023 (ICANN 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14256))

Included in the following conference series:

  • 1453 Accesses

Abstract

Traffic classification is a crucial technology for ensuring Quality of Service (QoS) in network services and network security management. Deep learning has shown great promise in this area, particularly for classifying encrypted traffic. However, the significant number of samples required for training models presents a challenge. In this paper, we propose a multi-task learning and Federated Learning approach for training multi-task models for encrypted traffic classification in a privacy-protected, multi-enterprise setting. Our proposed two-stage federated multi-task learning scheme, pFedDAMT, aims to address data heterogeneity by first obtaining a global multi-task model that performs well for all tasks and then personalizing and fine-tuning the model with each enterprise’s dataset to generate personalized models. Our experiments demonstrate that pFedDAMT improves prediction accuracy by an average of 1.58% compared to other schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10295
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12869
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, Z., Badrinarayanan, V., Lee, C.Y., Rabinovich, A.: Gradnorm: gradient normalization for adaptive loss balancing in deep multitask networks. In: International Conference on Machine Learning, pp. 794–803. PMLR (2018)

    Google Scholar 

  2. Chen, Z., et al.: Just pick a sign: optimizing deep multitask models with gradient sign dropout. Adv. Neural. Inf. Process. Syst. 33, 2039–2050 (2020)

    Google Scholar 

  3. Draper-Gil, G., Lashkari, A.H., Mamun, M.S.I., Ghorbani, A.A.: Characterization of encrypted and VPN traffic using time-related. In: Proceedings of the 2nd International Conference on Information Systems Security and Privacy (ICISSP), pp. 407–414 (2016)

    Google Scholar 

  4. Fallah, A., Mokhtari, A., Ozdaglar, A.: Personalized federated learning: a meta-learning approach. arXiv preprint arXiv:2002.07948 (2020)

  5. Huang, H., Deng, H., Chen, J., Han, L., Wang, W.: Automatic multi-task learning system for abnormal network traffic detection. Int. J. Emerg. Technol. Learn. 13(4) (2018)

    Google Scholar 

  6. Kendall, A., Gal, Y., Cipolla, R.: Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7482–7491 (2018)

    Google Scholar 

  7. Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated optimization in heterogeneous networks. Proc. Mach. Learn. Syst. 2, 429–450 (2020)

    Google Scholar 

  8. Lin, X., Xiong, G., Gou, G., Li, Z., Shi, J., Yu, J.: ET-BERT: a contextualized datagram representation with pre-training transformers for encrypted traffic classification. In: Proceedings of the ACM Web Conference 2022, pp. 633–642 (2022)

    Google Scholar 

  9. Liu, B., Liu, X., Jin, X., Stone, P., Liu, Q.: Conflict-averse gradient descent for multi-task learning. In: Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances in Neural Information Processing Systems (2021)

    Google Scholar 

  10. Liu, C., He, L., Xiong, G., Cao, Z., Li, Z.: FS-Net: a flow sequence network for encrypted traffic classification. In: IEEE INFOCOM 2019-IEEE Conference on Computer Communications, pp. 1171–1179. IEEE (2019)

    Google Scholar 

  11. Liu, S., Johns, E., Davison, A.J.: End-to-end multi-task learning with attention. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1871–1880 (2019)

    Google Scholar 

  12. Lotfollahi, M., Jafari Siavoshani, M., Shirali Hossein Zade, R., Saberian, M.: Deep packet: a novel approach for encrypted traffic classification using deep learning. Soft Comput. 24(3), 1999–2012 (2020)

    Google Scholar 

  13. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  14. Rezaei, S., Liu, X.: Deep learning for encrypted traffic classification: an overview. IEEE Commun. Mag. 57(5), 76–81 (2019)

    Article  Google Scholar 

  15. T Dinh, C., Tran, N., Nguyen, J.: Personalized federated learning with moreau envelopes. In: Advances in Neural Information Processing Systems, vol. 33, pp. 21394–21405 (2020)

    Google Scholar 

  16. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  17. Wang, W., Zhu, M., Wang, J., Zeng, X., Yang, Z.: End-to-end encrypted traffic classification with one-dimensional convolution neural networks. In: 2017 IEEE International Conference on Intelligence and Security Informatics (ISI), pp. 43–48. IEEE (2017)

    Google Scholar 

  18. Wang, W., Zhu, M., Zeng, X., Ye, X., Sheng, Y.: Malware traffic classification using convolutional neural network for representation learning. In: 2017 International Conference on Information Networking (ICOIN), pp. 712–717. IEEE (2017)

    Google Scholar 

  19. Wang, Z., Tsvetkov, Y., Firat, O., Cao, Y.: Gradient vaccine: investigating and improving multi-task optimization in massively multilingual models. In: International Conference on Learning Representations (2021)

    Google Scholar 

  20. Yu, T., Kumar, S., Gupta, A., Levine, S., Hausman, K., Finn, C.: Gradient surgery for multi-task learning. Adv. Neural. Inf. Process. Syst. 33, 5824–5836 (2020)

    Google Scholar 

  21. Zhao, Y., Chen, J., Wu, D., Teng, J., Yu, S.: Multi-task network anomaly detection using federated learning. In: Proceedings of the Tenth International Symposium on Information and Communication Technology, pp. 273–279 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haipeng Qu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guan, X., Du, R., Wang, X., Qu, H. (2023). A Personalized Federated Multi-task Learning Scheme for Encrypted Traffic Classification. In: Iliadis, L., Papaleonidas, A., Angelov, P., Jayne, C. (eds) Artificial Neural Networks and Machine Learning – ICANN 2023. ICANN 2023. Lecture Notes in Computer Science, vol 14256. Springer, Cham. https://doi.org/10.1007/978-3-031-44213-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44213-1_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44212-4

  • Online ISBN: 978-3-031-44213-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics