A Partitioned Detection Architecture for Oriented Objects | SpringerLink
Skip to main content

A Partitioned Detection Architecture for Oriented Objects

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2023 (ICANN 2023)

Abstract

Rotated object detection aims to identify and locate objects in images with oriented angles. In this case, the detection scenario varies a lot in multi-dimensions. Besides, multiple oriented objects always exist within a single image, which increase the complexity for angle prediction. Although representing the angle by an extra regression branch can enhance precision in rotated box detector, it’s more plausible to optimize the prediction process in a global view including feature-extraction, detection field partition and angle regression branch. In this paper, we introduced a partitioned detection architecture to identify objects which are at different scales, corresponding to different feature levels of the network. Inspired by Vision Transformer, a series of novel attention layers are embedded seamlessly for extracting necessary features from different scales and regions. We also conducted a short-term diffusion process to produce Gaussian noise in original image considering generalizability. As is shown, our detectors show a significant improvement of mAP and balance between performance and accuracy in two challenging aerial detection task, DOTA and HRSC2016.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9380
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11725
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zaidi, S.S.A., et al.: A survey of modern deep learning based object detection models. Digit. Signal Process. 126, 103514 (2022)

    Article  Google Scholar 

  2. Yang, X., et al.: SCRDet: towards more robust detection for small, cluttered and rotated objects. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8232–8241 (2019)

    Google Scholar 

  3. Wang, X., et al.: PP-YOLOE-R: An Efficient Anchor-Free Rotated Object Detector. arXiv preprint arXiv:2211.02386 (2022)

  4. Wang, J., et al.: Learning center probability map for detecting objects in aerial images. IEEE Trans. Geosci. Remote Sens. 59(5), 4307–4323 (2020)

    Article  Google Scholar 

  5. Wang, H., et al.: Multigrained angle representation for remote-sensing object detection. IEEE Trans. Geosci. Remote Sens. 60, 1–13 (2022)

    Google Scholar 

  6. Yang, X., et al.: R3Det: refined single-stage detector with feature refinement for rotating object. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 3163–3171 (2021)

    Google Scholar 

  7. Li, W., et al.: Oriented reppoints for aerial object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1829–1838 (2022)

    Google Scholar 

  8. Zhu, B., et al.: Autoassign: differentiable label assignment for dense object detection. arXiv preprint arXiv:2007.03496 (2020)

  9. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 483–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_29

    Chapter  Google Scholar 

  10. Yang, X., et al.: H2RBox: Horizonal Box Annotation is All You Need for Oriented Object Detection. arXiv preprint arXiv:2210.06742 (2022)

  11. Yang, X., et al.: The KFIoU loss for rotated object detection. arXiv preprint arXiv:2201.12558 (2022)

  12. Park, J., Woo, S., Lee, J.Y., Kweon, I.S.: BAM: bottleneck attention module. In: British Machine Vision Conference (2018)

    Google Scholar 

  13. Woo, S., Park, J.C., Lee, J.-Y., Kweon, I.: CBAM: convolutional block attention module. In: 15th European Conference, Munich, Germany, 8–14 September 2018, Part VII (2018). https://doi.org/10.1007/978-3-030-01234-2-1

  14. Xia, G.-S., et al.: DOTA: a large-scale dataset for object detection in aerial images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3974–3983 (2018)

    Google Scholar 

  15. Liu, Z., et al.: A high resolution optical satellite image dataset for ship recognition and some new baselines. In: ICPRAM, pp. 324–331 (2017)

    Google Scholar 

  16. Yang, X., Yan, J.: Arbitrary-oriented object detection with circular smooth label. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 677–694. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58598-3_40

    Chapter  Google Scholar 

  17. Yang, X., et al.: Learning high-precision bounding box for rotated object detection via kullback-leibler divergence. In: Advances in Neural Information Processing Systems, vol. 34, pp. 18381–18394 (2021)

    Google Scholar 

  18. Hou, L., Lu, K., Yang, X., Li, Y., Xue, J.: G-Rep: gaussian representation for arbitrary-oriented object detection. Remote. Sens. 15, 757 (2022)

    Article  Google Scholar 

  19. Guan, J., et al.: EARL: An Elliptical Distribution aided Adaptive Rotation Label Assignment for Oriented Object Detection in Remote Sensing Images. arXiv preprint arXiv:2301.05856 (2023)

  20. Yang, F., Fan, H., Chu, P., Blasch, E., Ling, H.: Clustered object detection in aerial images. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea (South), pp. 8310–8319 (2019). https://doi.org/10.1109/ICCV.2019.00840

  21. He, K., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  22. Ge, Z., et al.: Yolox: exceeding yolo series in 2021. arXiv preprint arXiv:2107.08430 (2021)

  23. Han, J., et al.: Align deep features for oriented object detection. IEEE Trans. Geosci. Remote Sens. 60, 1–11 (2021)

    Google Scholar 

  24. Chen, Z., et al.: PIoU loss: towards accurate oriented object detection in complex environments. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 195–211. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_12

    Chapter  Google Scholar 

  25. Zhang, S., et al.: Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9759–9768 (2020)

    Google Scholar 

  26. Pan, X., et al.: Dynamic refinement network for oriented and densely packed object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11207–11216 (2020)

    Google Scholar 

  27. Wei, H., et al.: Oriented objects as pairs of middle lines. ISPRS J. Photogramm. Remote. Sens. 169, 268–279 (2020)

    Article  Google Scholar 

  28. Jiang, Y., et al.: R2CNN: rotational region CNN for orientation robust scene text detection. arXiv preprint arXiv:1706.09579 (2017)

  29. Ding, J., et al.: Learning ROI transformer for oriented object detection in aerial images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2849–2858 (2019)

    Google Scholar 

  30. Ming, Q., et al.: Dynamic anchor learning for arbitrary-oriented object detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 2355–2363 (2021)

    Google Scholar 

  31. Liu, Z., et al.: Rotated region based CNN for ship detection. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 900–904. IEEE (2017)

    Google Scholar 

  32. Xiao, Z., Qian, L., Shao, W., Tan, X., Wang, K.: Axis learning for orientated objects detection in aerial images. Remote Sens. 12, 908 (2020)

    Article  Google Scholar 

  33. Feng, P., et al.: TOSO: Student’sT distribution aided one-stage orientation target detection in remote sensing images. In: ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4057–4061. IEEE (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuyang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, S., Wei, Y. (2023). A Partitioned Detection Architecture for Oriented Objects. In: Iliadis, L., Papaleonidas, A., Angelov, P., Jayne, C. (eds) Artificial Neural Networks and Machine Learning – ICANN 2023. ICANN 2023. Lecture Notes in Computer Science, vol 14256. Springer, Cham. https://doi.org/10.1007/978-3-031-44213-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44213-1_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44212-4

  • Online ISBN: 978-3-031-44213-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics