SS-Net: 3D Spatial-Spectral Network for Cerebrovascular Segmentation in TOF-MRA | SpringerLink
Skip to main content

SS-Net: 3D Spatial-Spectral Network for Cerebrovascular Segmentation in TOF-MRA

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2023 (ICANN 2023)

Abstract

The extraction of cerebrovascular structure plays a pivotal role in the diagnosis and analysis of various cerebrovascular diseases. However, cerebrovascular segmentation from time-of-flight magnetic resonance angiography (TOF-MRA) volumes remains a challenging task due to the complex topology, slender contour, and noisy background. This paper proposes a 3D SS-Net that combines the spatial and spectral domain features to accurately segment the cerebral vasculature. The SS-Net is based on an end-to-end autoencoder architecture, which incorporates both spatial and a spectral encoders. The spectral encoder branch applies 3D fast Fourier convolution (FFC) to extract global features and frequency domain features in the shallow layers of the network. Furthermore, we introduce cerebrovascular edge supervised information, which enables the network to model the high-frequency variations and distribution patterns of cerebrovascular edges more effectively. Experimental results show that the SS-Net delivers outstanding performance, achieving the DSC of 71.14% on a publicly available dataset and outperforming other 3D deep-learning-based approaches. Code: github.com/y8421036/SS-Net.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9380
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11725
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://public.kitware.com/Wiki/TubeTK/Data.

References

  1. Banerjee, S., Toumpanakis, D., Dhara, A.K., Wikström, J., Strand, R.: Topology-aware learning for volumetric cerebrovascular segmentation. In: 2022 IEEE 19th International Symposium on Biomedical Imaging, pp. 1–4 (2022). https://doi.org/10.1109/ISBI52829.2022.9761429

  2. Cetin, S., Demir, A., Yezzi, A., Degertekin, M., Unal, G.: Vessel tractography using an intensity based tensor model with branch detection. IEEE Trans. Med. Imaging 32(2), 348–363 (2013). https://doi.org/10.1109/TMI.2012.2227118

    Article  Google Scholar 

  3. Chen, Z., et al.: Generative adversarial network based cerebrovascular segmentation for time-of-flight magnetic resonance angiography image. Neurocomputing 488, 657–668 (2022)

    Article  Google Scholar 

  4. Chi, L., Jiang, B., Mu, Y.: Fast fourier convolution. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 4479–4488. Curran Associates, Inc. (2020)

    Google Scholar 

  5. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  6. Farshad, A., Yeganeh, Y., Gehlbach, P., Navab, N.: Y-net: a spatiospectral dual-encoder network for medical image segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13432, pp. 582–592. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16434-7_56

    Chapter  Google Scholar 

  7. Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Muliscale vessel enhancement filtering. In: International Conference on Medical Image Computing and Computer-Assisted Intervention (1998)

    Google Scholar 

  8. Han, H., et al.: Reduction of cerebral blood flow in community-based adults with subclinical cerebrovascular atherosclerosis: a 3.0T magnetic resonance imaging study. NeuroImage 188, 302–308 (2019). https://doi.org/10.1016/j.neuroimage.2018.12.021

  9. Jenkinson, M., Pechaud, M., Smith, S., et al.: BET2: MR-based estimation of brain, skull and scalp surfaces. In: Eleventh Annual Meeting of the Organization for Human Brain Mapping, Toronto, vol. 17, p. 167 (2005)

    Google Scholar 

  10. Liao, W., Rohr, K., Wörz, S.: Globally optimal curvature-regularized fast marching for vessel segmentation. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8149, pp. 550–557. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40811-3_69

    Chapter  Google Scholar 

  11. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision, pp. 565–571. IEEE (2016)

    Google Scholar 

  12. Mou, L., et al.: CS2-Net: deep learning segmentation of curvilinear structures in medical imaging. Med. Image Anal. 67, 101874 (2021)

    Article  Google Scholar 

  13. Phellan, R., Peixinho, A., Falcão, A., Forkert, N.D.: Vascular segmentation in TOF MRA images of the brain using a deep convolutional neural network. In: Cardoso, M.J., et al. (eds.) LABELS/CVII/STENT -2017. LNCS, vol. 10552, pp. 39–46. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67534-3_5

    Chapter  Google Scholar 

  14. Sanchesa, P., Meyer, C., Vigon, V., Naegel, B.: Cerebrovascular network segmentation of mra images with deep learning. In: 2019 IEEE 16th International Symposium on Biomedical Imaging, pp. 768–771. IEEE (2019)

    Google Scholar 

  15. Suvorov, R., et al.: Resolution-robust large mask inpainting with fourier convolutions. In: 2022 IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3172–3182 (2022). https://doi.org/10.1109/WACV51458.2022.00323

  16. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  17. Wang, Y., et al.: JointVesselNet: joint volume-projection convolutional embedding networks for 3D cerebrovascular segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 106–116. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_11

    Chapter  Google Scholar 

  18. Yang, X., Cheng, K.T., Chien, A.: Geodesic active contours with adaptive configuration for cerebral vessel and aneurysm segmentation. In: 2014 22nd International Conference on Pattern Recognition, pp. 3209–3214 (2014). https://doi.org/10.1109/ICPR.2014.553

  19. Zhang, H., et al.: Context encoding for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7151–7160 (2018)

    Google Scholar 

  20. Zhang, H., et al.: Cerebrovascular segmentation in MRA via reverse edge attention network. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 66–75. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_7

    Chapter  Google Scholar 

  21. Zhao, Y., et al.: Automatic 2-D/3-D vessel enhancement in multiple modality images using a weighted symmetry filter. IEEE Trans. Med. Imaging 37(2), 438–450 (2018). https://doi.org/10.1109/TMI.2017.2756073

  22. Zhou, S., et al.: Statistical intensity- and shape-modeling to automate cerebrovascular segmentation from TOF-MRA data. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 164–172. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_19

    Chapter  Google Scholar 

Download references

Acknowledgements

This work is partly supported by National Key R &D Program of China (Grant no. 2019YFF0301800), National Natural Science Foundation of China (Grant no. 61379106, 61806199), the General Research Projects of Beijing Educations Committee in China (Grant no. KM201910005013), the Shandong Provincial Natural Science Foundation (Grant nos. ZR2015FM011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongmin Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, C. et al. (2023). SS-Net: 3D Spatial-Spectral Network for Cerebrovascular Segmentation in TOF-MRA. In: Iliadis, L., Papaleonidas, A., Angelov, P., Jayne, C. (eds) Artificial Neural Networks and Machine Learning – ICANN 2023. ICANN 2023. Lecture Notes in Computer Science, vol 14256. Springer, Cham. https://doi.org/10.1007/978-3-031-44213-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44213-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44212-4

  • Online ISBN: 978-3-031-44213-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics