Abstract
Neocortical pyramidal neurons integrate two distinct streams of information. Bottom-up information arrives at their basal dendrites, and resulting neuronal activity is modulated by top-down input that targets the apical tufts of these neurons and provides context information. Although this integration is essential for cortical computations, its relevance for the computations in spiking neural networks has so far not been investigated. In this article, we propose a simple spiking neuron model for pyramidal cells. The model consists of a basal and an apical compartment, where the latter modulates activity of the former in a multiplicative manner. We show that this model captures the experimentally observed properties of top-down modulated activity of cortical pyramidal neurons. We evaluated recurrently connected networks of such neurons in a series of context-dependent computation tasks. Our results show that the resulting novel spiking neural network model can significantly enhance spike-based context-dependent computations.
Supported by the European Community’s Horizon 2020 FET-Open Programme, grant number 899265, ADOPD and by the CHIST-ERA grant CHIST-ERA-18-ACAI-004, Austrian Science Fund (FWF) proj. nb. I 4670-N (project SMALL).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amir, A., et al.: A low power, fully event-based gesture recognition system. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7243–7252 (2017)
Antic, S.D., Zhou, W.L., Moore, A.R., Short, S.M., Ikonomu, K.D.: The decade of the dendritic NMDA spike. J. Neurosci. Res. 88(14), 2991–3001 (2010)
Asgari, H., Maybodi, B.M.N., Payvand, M., Azghadi, M.R.: Low-energy and fast spiking neural network for context-dependent learning on FPGA. IEEE Trans. Circuits Syst. II Express Briefs 67(11), 2697–2701 (2020)
Bellec, G., Salaj, D., Subramoney, A., Legenstein, R., Maass, W.: Long short-term memory and learning-to-learn in networks of spiking neurons. In: Advances in Neural Information Processing Systems, vol. 31 (2018)
Beniaguev, D., Segev, I., London, M.: Single cortical neurons as deep artificial neural networks. Neuron 109(17), 2727–2739 (2021)
Chen, G., Scherr, F., Maass, W.: A data-based large-scale model for primary visual cortex enables brain-like robust and versatile visual processing. Sci. Adv. 8(44), eabq7592 (2022)
Cramer, B., Stradmann, Y., Schemmel, J., Zenke, F.: The Heidelberg spiking data sets for the systematic evaluation of spiking neural networks. IEEE Trans. Neural Netw. Learn. Syst. 33(7), 2744–2757 (2020)
Davies, M., et al.: Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro 38(1), 82–99 (2018)
Frenkel, C., Indiveri, G.: ReckOn: a 28 nm sub-mm2 task-agnostic spiking recurrent neural network processor enabling on-chip learning over second-long timescales. In: 2022 IEEE ISSCC, vol. 65, pp. 1–3. IEEE (2022)
Gerstner, W., Kistler, W.M., Naud, R., Paninski, L.: Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition. Cambridge University Press, Cambridge (2014)
Gilbert, C.D., Li, W.: Top-down influences on visual processing. Nat. Rev. Neurosci. 14(5), 350–363 (2013)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
Jayakumar, S.M., et al.: Multiplicative interactions and where to find them. In: ICLR (2020)
Kaiser, J., Billaudelle, S., Müller, E., Tetzlaff, C., Schemmel, J., Schmitt, S.: Emulating dendritic computing paradigms on analog neuromorphic hardware. Neuroscience 489, 290–300 (2022)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2017)
Kreiman, G., Serre, T.: Beyond the feedforward sweep: feedback computations in the visual cortex. Ann. N. Y. Acad. Sci. 1464(1), 222–241 (2020)
Larkum, M.E., Senn, W., Lüscher, H.R.: Top-down dendritic input increases the gain of layer 5 pyramidal neurons. Cereb. Cortex 14(10), 1059–1070 (2004)
Larkum, M.E., Wu, J., Duverdin, S.A., Gidon, A.: The guide to dendritic spikes of the mammalian cortex in vitro and in vivo 489, 15–33 (2022)
Liang, D., Indiveri, G.: A neuromorphic computational primitive for robust context-dependent decision making and context-dependent stochastic computation. IEEE Trans. Circuits Syst. II: Express Briefs 66(5), 843–847 (2019)
Limbacher, T., Özdenizci, O., Legenstein, R.: Memory-enriched computation and learning in spiking neural networks through Hebbian plasticity. arXiv preprint arXiv:2205.11276 (2022)
Maass, W.: Networks of spiking neurons: the third generation of neural network models. Neural Netw. 10(9), 1659–1671 (1997)
Merolla, P.A., et al.: A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345(6197), 668–673 (2014)
Moradi, S., Qiao, N., Stefanini, F., Indiveri, G.: A scalable multicore architecture with heterogeneous memory structures for dynamic neuromorphic asynchronous processors (DYNAPs). IEEE Trans. Biomed. Circuits Syst. 12(1), 106–122 (2017)
Painkras, E., et al.: Spinnaker: a 1-w 18-core system-on-chip for massively-parallel neural network simulation. IEEE J. Solid-State Circuits 48(8), 1943–1953 (2013)
Paugam-Moisy, H., Bohte, S.M.: Computing with spiking neuron networks. Rozenberg, G., Bäck, T., Kok, J.N. (eds.) Handbook of Natural Computing, vol. 1, pp. 1–47 (2012). https://doi.org/10.1007/978-3-540-92910-9_10
Pei, J., et al.: Towards artificial general intelligence with hybrid Tianjic chip architecture. Nature 572(7767), 106–111 (2019)
Quaresima, A., Fitz, H., Duarte, R., Broek, D.V.D., Hagoort, P., Petersson, K.M.: The tripod neuron: a minimal structural reduction of the dendritic tree. J. Physiol. (2022)
Rossbroich, J., Gygax, J., Zenke, F.: Fluctuation-driven initialization for spiking neural network training. Neuromorphic Comput. Eng. 2(4), 044016 (2022)
Schemmel, J., Kriener, L., Müller, P., Meier, K.: An accelerated analog neuromorphic hardware system emulating NMDA-and calcium-based non-linear dendrites. In: IJCNN, pp. 2217–2226. IEEE (2017)
Schuman, B., Dellal, S., Prönneke, A., Machold, R., Rudy, B.: Neocortical layer 1: an elegant solution to top-down and bottom-up integration. Annu. Rev. Neurosci. 44, 221–252 (2021)
Shrestha, S.B., Orchard, G.: Slayer: spike layer error reassignment in time. In: Advances in Neural Information Processing Systems, vol. 31 (2018)
Tavanaei, A., Ghodrati, M., Kheradpisheh, S.R., Masquelier, T., Maida, A.: Deep learning in spiking neural networks. Neural Netw. 111, 47–63 (2019)
Tripathy, S.J., Savitskaya, J., Burton, S.D., Urban, N.N., Gerkin, R.C.: NeuroElectro: a window to the world’s neuron electrophysiology data. Front. Neuroinform. 8, 40 (2014)
Ujfalussy, B.B., Makara, J.K., Lengyel, M., Branco, T.: Global and multiplexed dendritic computations under in vivo-like conditions. Neuron 100(3), 579–592 (2018)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Wybo, W.A., Jordan, J., Ellenberger, B., Marti Mengual, U., Nevian, T., Senn, W.: Data-driven reduction of dendritic morphologies with preserved dendro-somatic responses. eLife 10, e60936 (2021)
Yang, S., Wang, J., Deng, B., Azghadi, M.R., Linares-Barranco, B.: Neuromorphic context-dependent learning framework with fault-tolerant spike routing. IEEE Trans. Neural Netw. Learn. Syst. 33(12), 7126–7140 (2021)
Zenke, F., Vogels, T.P.: The remarkable robustness of surrogate gradient learning for instilling complex function in spiking neural networks. Neural Comput. 33(4), 899–925 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ferrand, R., Baronig, M., Limbacher, T., Legenstein, R. (2023). Context-Dependent Computations in Spiking Neural Networks with Apical Modulation. In: Iliadis, L., Papaleonidas, A., Angelov, P., Jayne, C. (eds) Artificial Neural Networks and Machine Learning – ICANN 2023. ICANN 2023. Lecture Notes in Computer Science, vol 14254. Springer, Cham. https://doi.org/10.1007/978-3-031-44207-0_32
Download citation
DOI: https://doi.org/10.1007/978-3-031-44207-0_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-44206-3
Online ISBN: 978-3-031-44207-0
eBook Packages: Computer ScienceComputer Science (R0)