Enhanced Point Cloud Interpretation via Style Fusion and Contrastive Learning in Advanced 3D Data Analysis | SpringerLink
Skip to main content

Enhanced Point Cloud Interpretation via Style Fusion and Contrastive Learning in Advanced 3D Data Analysis

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2023 (ICANN 2023)

Abstract

Point clouds, as the most prevalent representation of 3D data, are inherently disordered, unstructured, and discrete. Feature extraction from point clouds can be challenging, as objects with similar styles may be misclassified, and uncertain backgrounds or noise can significantly impact the performance of traditional classification models. To address these challenges, we introduce StyleContrast, a novel contrastive learning algorithm for style fusion. This approach effectively fuses styles of point clouds belonging to the same category across different domain datasets at the feature level, thus fulfilling the need for data enhancement. By aligning point clouds with their corresponding style-fused point clouds in the feature space, StyleContrast allows the feature extractor to learn style-independent invariant features. Moreover, our method incorporates category-centric contrastive loss to differentiate between similar objects from different categories. Experimental results demonstrate that StyleContrast achieves superior performance on Modelnet40, ShapenetPart, and ScanObjectNN, surpassing all existing methods in terms of classification accuracy. Ablation experiments further confirm that our approach excels in point cloud feature analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9380
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11725
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abhinav, U., Alpana, D., Kuriakose, S.-M., Mahato, D.: 3DSTNet: neural 3D shape style transfer. In: 2022 IEEE International Conference on Multimedia and Expo Workshops (ICMEW), pp. 1–6. IEEE (2022)

    Google Scholar 

  2. Afham, M., Dissanayake, I., Dissanayake, D., Dharmasiri, A., Thilakarathna, K., Rodrigo, R.: CrossPoint: self-supervised cross-modal contrastive learning for 3D point cloud understanding. In: The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9892–9902. IEEE (2022)

    Google Scholar 

  3. Chang, A.-X., et al.: ShapeNet: an information-rich 3D model repository. CoRR abs/1512.03012 (2015). arxiv.org/abs/1512.03012

  4. Chen, T., Kornblith, S., Norouzi, M., Geoffrey, H.: A simple framework for contrastive learning of visual representations. In: The 37th International Conference on Machine Learning, pp. 1597–1607 (2020)

    Google Scholar 

  5. Deng, J., Dong, W., Socher, R., Li, L.-J., Kai, L., Li, F.-F.: ImageNet: a large-scale hierarchical image database. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 248–255. IEEE (2009)

    Google Scholar 

  6. Guo, M., Cai, J., Liu, Z., Mu, T., Martin, R., Hu, S.: PCT: point cloud transformer. Comput. Vis. Media 7(2), 187–199 (2021)

    Article  Google Scholar 

  7. He, K.-M., Fan, H.-Q., Wu, Y.-X., Xie, S.-N., Girshick, R.-B.: Momentum contrast for unsupervised visual representation learning. In: The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9726–9735. IEEE (2020)

    Google Scholar 

  8. Isola, P., Zhu, J.-Y., Zhou, T.-H., Efros, A.-A.: Image-to-image translation with conditional adversarial networks. In: The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1125–1134. IEEE (2017)

    Google Scholar 

  9. Jiang, L., et al.: Guided point contrastive learning for semi-supervised point cloud semantic segmentation. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6403–6412. IEEE (2021)

    Google Scholar 

  10. Laurens, V.-M., Geoffrey, E.-H.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2021)

    Google Scholar 

  11. Li, R.-H., Li, X.-Z., Heng, P.-A., Fu, C.-W.: PointAugment: an auto-augmentation framework for point cloud classification. In: The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6377–6386. IEEE (2020)

    Google Scholar 

  12. Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: PointCNN: convolution on X-transformed points. In: NeurIPS, vol. 31. Curran Associates (2018)

    Google Scholar 

  13. Lin, M.-X., et al.: Single image 3D shape retrieval via cross-modal instance and category contrastive learning. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 11385–11395. IEEE (2021)

    Google Scholar 

  14. Liu, Z., Hu, H., Cao, Y., Zhang, Z., Tong, X.: A closer look at local aggregation operators in point cloud analysis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12368, pp. 326–342. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58592-1_20

    Chapter  Google Scholar 

  15. Lun, Z.-L., Kalogerakis, E., Sheffer, A.: Elements of style: learning perceptual shape style similarity. ACM Trans. Graph. (TOG) 34(4), 1–14 (2015)

    Article  Google Scholar 

  16. Nazir, D., Afzal, M.-Z., Pagani, A., Liwicki, M., Stricker, D.: Contrastive learning for 3D point clouds classification and shape completion. Sensors 21(21), 7392 (2021)

    Article  Google Scholar 

  17. Oord, A., Li, Y.-Z., Vinyals, O.: Representation learning with contrastive predictive coding. CoRR abs/1807.03748 (2018). arxiv.org/abs/1807.03748

  18. Qi, C.-R., Su, H., Mo, K., Guibas, L.-J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 77–85. IEEE (2017)

    Google Scholar 

  19. Qi, C.-R., Yi, L., Su, H., Guibas, L.-J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: NIPS, vol. 30, pp. 5099–5108 (2017)

    Google Scholar 

  20. Sanghi, A.: Info3D: representation learning on 3D objects using mutual information maximization and contrastive learning. CoRR abs/2006.02598 (2020). arxiv.org/abs/2006.02598

  21. Snell, J., Swersky, K., Zemel, R.-S.: Prototypical networks for few-shot learning. CoRR abs/1703.05175 (2017). arxiv.org/abs/1703.05175

  22. Sun, C., Zheng, Z., Wang, X., Xu, M., Yang, Y.: Self-supervised point cloud representation learning via separating mixed shapes. IEEE Trans. Multimedia, 1–11 (2022)

    Google Scholar 

  23. Uy, M.-A., Pham, Q.-H., Hua, B.-S., Nguyen, D.-T., Yeung, S.K.: Revisiting point cloud classification: a new benchmark dataset and classification model on real-world data. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 1588–1597. IEEE (2019)

    Google Scholar 

  24. Wang, Y., Sun, Y.-B., Liu, Z.-W., Sarma, S.-E., Michael, M.-B., Justin, M.-S.: Dynamic graph CNN for learning on point clouds. ACM Trans. Graph. (TOG) 38(5), 1–12 (2019)

    Article  Google Scholar 

  25. Wu, W.-X., Qi, Z.-G., Li, F.-X.: PointConv: deep convolutional networks on 3D point clouds. In: The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9613–9622. IEEE (2019)

    Google Scholar 

  26. Wu, Z.-J., Wang, X., Lin, D., Lischinski, D., Cohen-Or, D., Huang, H.: Structure-aware generative network for 3D-shape modeling. ACM Trans. Graph. (TOG) 38(4), 1–14 (2019)

    Article  MathSciNet  Google Scholar 

  27. Wu, Z.-R., et al.: 3D ShapeNets: a deep representation for volumetric shapes. In: The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1912–1920. IEEE (2015)

    Google Scholar 

  28. Xie, S.-N., Gu, J.-T., Guo, D.-M., Qi, C., Guibas, L.-J., Litany, O.: PointContrast: unsupervised pre-training for 3D point cloud understanding. CoRR abs/2007.10985 (2020). arxiv.org/abs/2007.10985

  29. Yin, K., Chen, Z.-Q., Huang, H., Cohen-Or, D., Zhang, H.: LOGAN: unpaired shape transform in latent overcomplete space. ACM Trans. Graph. (TOG) 38(6), 1–13 (2019)

    Article  Google Scholar 

  30. Zhang, J., et al.: PointCutMix: regularization strategy for point cloud classification. Neurocomputing 505, 58–67 (2022)

    Article  Google Scholar 

  31. Zheng, W., Tang, W.-L., Jiang, L., Fu, C.-W.: SE-SSD: self-ensembling single-stage object detector from point cloud. In: The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14489–14498. IEEE (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Ming Own .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, R., Own, CM. (2023). Enhanced Point Cloud Interpretation via Style Fusion and Contrastive Learning in Advanced 3D Data Analysis. In: Iliadis, L., Papaleonidas, A., Angelov, P., Jayne, C. (eds) Artificial Neural Networks and Machine Learning – ICANN 2023. ICANN 2023. Lecture Notes in Computer Science, vol 14254. Springer, Cham. https://doi.org/10.1007/978-3-031-44207-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44207-0_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44206-3

  • Online ISBN: 978-3-031-44207-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics