Transforming Limitations into Advantages: Improving Small Object Detection Accuracy with SC-AttentionIoU Loss Function | SpringerLink
Skip to main content

Transforming Limitations into Advantages: Improving Small Object Detection Accuracy with SC-AttentionIoU Loss Function

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2023 (ICANN 2023)

Abstract

Small object detection is widely used in industries, military, autonomous driving and other fields. However, the accuracy of existing detection models in small object detection needs to be improved. This paper proposes the SC-AttentionIoU loss function to stress the issue. Due to the less features of small objects, SC-AttentionIoU introduces attention within the true bounding box, allowing the existing detection models to focus on the critical features of small objects. Besides, considering attention perhaps ignore non-critical features, SC-AttentionIoU proposes an adjustment factor to balance the critical and non-critical feature areas. Using the YOLOv5s model as a baseline, compared with the widely used CIoU, SC-AttentionIoU achieved an average improvement of 1% in mAP@.5 on the SSDD dataset and an average improvement of 1.47% in mAP@.5 on the PCB dataset in this experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9380
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11725
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: YOLOv4: optimal speed and accuracy of object detection (2020)

    Google Scholar 

  2. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers (2020)

    Google Scholar 

  3. Chu, X., et al.: Twins: revisiting the design of spatial attention in vision transformers (2021)

    Google Scholar 

  4. Ge, Z., Liu, S., Wang, F., Li, Z., Sun, J.: YOLOX: exceeding YOLO series in 2021 (2021)

    Google Scholar 

  5. He, J., Erfani, S., Ma, X., Bailey, J., Chi, Y., Hua, X.S.: Alpha-IoU: a family of power intersection over union losses for bounding box regression (2022)

    Google Scholar 

  6. Hou, Q., Zhou, D., Feng, J.: Coordinate attention for efficient mobile network design (2021)

    Google Scholar 

  7. Li, J., et al.: Next-ViT: next generation vision transformer for efficient deployment in realistic industrial scenarios (2022)

    Google Scholar 

  8. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows (2021)

    Google Scholar 

  9. Prathima, G., Lakshmi, A.Y.N., Kumar, C.V., Manikanta, A., Sandeep, B.J.: Defect detection in PCB using image processing. Int. J. Adv. Sci. Technol. 29(4) (2020)

    Google Scholar 

  10. Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: a metric and a loss for bounding box regression (2019)

    Google Scholar 

  11. Xu, S., et al.: PP-YOLOE: an evolved version of YOLO (2022)

    Google Scholar 

  12. Xu, X., Jiang, Y., Chen, W., Huang, Y., Zhang, Y., Sun, X.: DAMO-YOLO: a report on real-time object detection design (2023)

    Google Scholar 

  13. Yang, L., Zhong, J., Zhang, Y., Bai, S., Li, G., Yang, Y., Zhang, J.: An improving faster-RCNN with multi-attention ResNet for small target detection in intelligent autonomous transport with 6G. IEEE Trans. Intell. Transp. Syst., 1–9 (2022). https://doi.org/10.1109/TITS.2022.3193909

  14. Yu, G., et al.: PP-PicoDet: a better real-time object detector on mobile devices (2021)

    Google Scholar 

  15. Yu, J., Jiang, Y., Wang, Z., Cao, Z., Huang, T.: UnitBox: an advanced object detection network. In: Proceedings of the 24th ACM International Conference on Multimedia, pp. 516–520 (2016). https://doi.org/10.1145/2964284.2967274

  16. Zhang, T., et al.: SAR Ship Detection Dataset (SSDD): official release and comprehensive data analysis. Remote Sensing 13(18), 3690 (2021). https://doi.org/10.3390/rs13183690

    Article  Google Scholar 

  17. Zhang, Y.F., Ren, W., Zhang, Z., Jia, Z., Wang, L., Tan, T.: Focal and efficient IOU loss for accurate bounding box regression (2022)

    Google Scholar 

  18. Zhao, W., Kang, Y., Chen, H., Zhao, Z., Zhai, Y., Yang, P.: A target detection algorithm for remote sensing images based on a combination of feature fusion and improved anchor. IEEE Trans. Instrum. Meas. 71, 1–8 (2022). https://doi.org/10.1109/TIM.2022.3181927

    Article  Google Scholar 

  19. Zheng, Z., Wang, P., Liu, W., Li, J., Ye, R., Ren, D.: Distance-IoU loss: faster and better learning for bounding box regression. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34(07), pp. 12993–13000 (2020). https://doi.org/10.1609/aaai.v34i07.6999

Download references

Acknowledgements

This work was supported by Key R &D Program of Shan dong Province, China (2022RZB02012), the Taishan Scholars Program (NO. tscy2 0221110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, M., Yi, C., Li, M., Wan, H., Li, G., Han, D. (2023). Transforming Limitations into Advantages: Improving Small Object Detection Accuracy with SC-AttentionIoU Loss Function. In: Iliadis, L., Papaleonidas, A., Angelov, P., Jayne, C. (eds) Artificial Neural Networks and Machine Learning – ICANN 2023. ICANN 2023. Lecture Notes in Computer Science, vol 14260. Springer, Cham. https://doi.org/10.1007/978-3-031-44195-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44195-0_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44194-3

  • Online ISBN: 978-3-031-44195-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics