Unsupervised Learning for Feature Extraction and Temporal Alignment of 3D+t Point Clouds of Zebrafish Embryos | SpringerLink
Skip to main content

Unsupervised Learning for Feature Extraction and Temporal Alignment of 3D+t Point Clouds of Zebrafish Embryos

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14227))

  • 3503 Accesses

Abstract

Zebrafish are widely used in biomedical research and developmental stages of their embryos often need to be synchronized for further analysis. We present an unsupervised approach to extract descriptive features from 3D+t point clouds of zebrafish embryos and subsequently use those features to temporally align corresponding developmental stages. An autoencoder architecture is proposed to learn a descriptive representation of the point clouds and we designed a deep regression network for their temporal alignment. We achieve a high alignment accuracy with an average mismatch of only 3.83 min over an experimental duration of 5.3 h. As a fully-unsupervised approach, there is no manual labeling effort required and unlike manual analyses the method easily scales. Besides, the alignment without human annotation of the data also avoids any influence caused by subjective bias.

Z. Chen and I. Laube—Equal contrib.; funded by the German Research Foundation DFG (STE2802/1-1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10295
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12869
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yang, Y., Feng, C., Shen, Y., Tian, D.: FoldingNet: point cloud auto-encoder via deep grid deformation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 206–215 (2018)

    Google Scholar 

  2. Traub, M., Stegmaier, J.: Towards automatic embryo staging in 3D+t microscopy images using convolutional neural networks and PointNets. In: Simulation and Synthesis in Medical Imaging, pp. 153–163 (2020)

    Google Scholar 

  3. Teame, T., et al.: The use of zebrafish (Danio rerio) as biomedical models. Anim. Front. 9(3), 68–77 (2019)

    Google Scholar 

  4. Kobitski, A.Y., et al.: An ensemble-averaged, cell density-based digital model of zebrafish embryo development derived from light-sheet microscopy data with single-cell resolution. Sci. Rep. 5(1), 8601 (2015)

    Article  Google Scholar 

  5. Guignard, L., Godin, C., Fiuza, U.M., Hufnagel, L., Lemaire, P., Malandain, G.: Spatio-temporal registration of embryo images. In: 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), pp. 778–781 (2014)

    Google Scholar 

  6. Castro-González, C., et al.: A digital framework to build, visualize and analyze a gene expression atlas with cellular resolution in zebrafish early embryogenesis. PLoS Comput. Biol. 10(6), 1–13 (2014)

    Article  Google Scholar 

  7. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11), 2579–2605 (2008)

    MATH  Google Scholar 

  8. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 652–660 (2017)

    Google Scholar 

  9. Ahrens, J., Geveci, B., Law, C.C.: ParaView: An End-User Tool for Large-Data Visualization. In: The Visualization Handbook (2005)

    Google Scholar 

  10. Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch geometric. In: ICLR 2019 Workshop on Representation Learning on Graphs and Manifolds (2019)

    Google Scholar 

  11. Chaton, T., Chaulet, N., Horache, S., Landrieu, L.: Torch-Points3D: a modular multi-task framework for reproducible deep learning on 3D point clouds. In: 2020 International Conference on 3D Vision (3DV), pp. 1–10 (2020)

    Google Scholar 

  12. Schott, B.: EmbryoMiner: a new framework for interactive knowledge discovery in large-scale cell tracking data of developing embryos. PLoS Comput. Biol. 14(4), 1–18 (2018)

    Article  Google Scholar 

  13. Michelin, G., et al.: Spatio-temporal registration of 3D microscopy image sequences of arabidopsis floral meristems. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 1127–1130 (2016)

    Google Scholar 

  14. Michelin, G., Guignard, L., Fiuza, U.M., Lemaire, P., Godine, C., Malandain, G.: Cell pairings for ascidian embryo registration. In: 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp. 298–301 (2015)

    Google Scholar 

  15. McDole, K., et al.: In Toto imaging and reconstruction of post-implantation mouse development at the single-cell level. Cell 175(3), 859–876 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Stegmaier .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 8268 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Z., Laube, I., Stegmaier, J. (2023). Unsupervised Learning for Feature Extraction and Temporal Alignment of 3D+t Point Clouds of Zebrafish Embryos. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14227. Springer, Cham. https://doi.org/10.1007/978-3-031-43993-3_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43993-3_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43992-6

  • Online ISBN: 978-3-031-43993-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics