Lesion-Aware Contrastive Learning for Diabetic Retinopathy Diagnosis | SpringerLink
Skip to main content

Lesion-Aware Contrastive Learning for Diabetic Retinopathy Diagnosis

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14226))

Abstract

Early diagnosis and screening of diabetic retinopathy are critical in reducing the risk of vision loss in patients. However, in a real clinical situation, manual annotation of lesion regions in fundus images is time-consuming. Contrastive learning(CL) has recently shown its strong ability for self-supervised representation learning due to its ability of learning the invariant representation without any extra labelled data. In this study, we aim to investigate how CL can be applied to extract lesion features in medical images. However, can the direct introduction of CL into the deep learning framework enhance the representation ability of lesion characteristics? We show that the answer is no. Due to the lesion-specific regions being insignificant in medical images, directly introducing CL would inevitably lead to the effects of false negatives, limiting the ability of the discriminative representation learning. Essentially, two key issues should be considered: (1) How to construct positives and negatives to avoid the problem of false negatives? (2) How to exploit the hard negatives for promoting the representation quality of lesions? In this work, we present a lesion-aware CL framework for DR grading. Specifically, we design a new generating positives and negatives strategy to overcome the false negatives problem in fundus images. Furthermore, a dynamic hard negatives mining method based on knowledge distillation is proposed in order to improve the quality of the learned embeddings. Extensive experimental results show that our method significantly advances state-of-the-art DR grading methods to a considerable 88.0%ACC/86.8% Kappa on the EyePACS benchmark dataset. Our code is available at https://github.com/IntelliDAL/Image.

S. Cheng and Q. Ho—Contribute equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11210
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14013
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ayhan, M.S., Kühlewein, L., Aliyeva, G., Inhoffen, W., Ziemssen, F., Berens, P.: Expert-validated estimation of diagnostic uncertainty for deep neural networks in diabetic retinopathy detection. Med. Image Anal. 64, 101724 (2020)

    Article  Google Scholar 

  2. Cai, T.T., Frankle, J., Schwab, D.J., Morcos, A.S.: Are all negatives created equal in contrastive instance discrimination? arXiv preprint arXiv:2010.06682 (2020)

  3. Cao, P., Hou, Q., Song, R., Wang, H., Zaiane, O.: Collaborative learning of weakly-supervised domain adaptation for diabetic retinopathy grading on retinal images. Comput. Biol. Med. 144, 105341 (2022)

    Article  Google Scholar 

  4. Emma Dugas, Jared, J.W.C.: Diabetic retinopathy detection (2015). https://kaggle.com/competitions/diabetic-retinopathy-detection

  5. Fu, H., et al.: Evaluation of retinal image quality assessment networks in different color-spaces. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 48–56. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_6

    Chapter  Google Scholar 

  6. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)

    Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  8. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. Comput. Sci. 14(7), 38–39 (2015)

    Google Scholar 

  9. Hou, Q., Cao, P., Jia, L., Chen, L., Yang, J., Zaiane, O.R.: Image quality assessment guided collaborative learning of image enhancement and classification for diabetic retinopathy grading. IEEE J. Biomed. Health Inform. 1–12 (2022). https://doi.org/10.1109/JBHI.2022.3231276

  10. Huang, Y., Lin, L., Cheng, P., Lyu, J., Tang, X.: Lesion-based contrastive learning for diabetic retinopathy grading from fundus images. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 113–123. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_11

    Chapter  Google Scholar 

  11. Li, X., Jia, M., Islam, M.T., Yu, L., Xing, L.: Self-supervised feature learning via exploiting multi-modal data for retinal disease diagnosis. IEEE Trans. Med. Imaging 39(12), 4023–4033 (2020)

    Article  Google Scholar 

  12. Lin, Z., et al.: A framework for identifying diabetic retinopathy based on anti-noise detection and attention-based fusion. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 74–82. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_9

    Chapter  Google Scholar 

  13. Liu, X., et al.: A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis. Lancet Digit. Health 1(6), e271–e297 (2019)

    Article  Google Scholar 

  14. Ogurtsova, K., et al.: IDF diabetes atlas: global estimates of undiagnosed diabetes in adults for 2021. Diabetes Res. Clin. Pract. 183, 109118 (2022)

    Article  Google Scholar 

  15. Porwal, P., Pachade, S., Kamble, R., Kokare, M., Meriaudeau, F.: Indian diabetic retinopathy image dataset (idrid): a database for diabetic retinopathy screening research. Data 3(3), 25 (2018)

    Article  Google Scholar 

  16. Robinson, J., Chuang, C.Y., Sra, S., Jegelka, S.: Contrastive learning with hard negative samples. In: International Conference on Learning Representations (ICLR) (2021)

    Google Scholar 

  17. Shen, Z., Fu, H., Shen, J., Shao, L.: Modeling and enhancing low-quality retinal fundus images. IEEE Trans. Med. Imaging 40(3), 996–1006 (2020)

    Article  Google Scholar 

  18. Tian, Y., Sun, C., Poole, B., Krishnan, D., Schmid, C., Isola, P.: What makes for good views for contrastive learning? Adv. Neural. Inf. Process. Syst. 33, 6827–6839 (2020)

    Google Scholar 

  19. Wang, X., Xu, M., Zhang, J., Jiang, L., Li, L.: Deep multi-task learning for diabetic retinopathy grading in fundus images. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 2826–2834 (2021)

    Google Scholar 

  20. Wang, Z., Yin, Y., Shi, J., Fang, W., Li, H., Wang, X.: Zoom-in-Net: deep mining lesions for diabetic retinopathy detection. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 267–275. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_31

    Chapter  Google Scholar 

  21. Xu, G., Liu, Z., Li, X., Loy, C.C.: Knowledge distillation meets self-supervision. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 588–604. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_34

  22. Yu, S., et al.: MIL-VT: multiple instance learning enhanced vision transformer for fundus image classification. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12908, pp. 45–54. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87237-3_5

    Chapter  Google Scholar 

  23. Zeng, X., Chen, H., Luo, Y., Ye, W.: Automated detection of diabetic retinopathy using a binocular Siamese-like convolutional network. In: 2019 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5. IEEE (2019)

    Google Scholar 

  24. Zhou, K., et al.: Multi-cell multi-task convolutional neural networks for diabetic retinopathy grading. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2724–2727. IEEE (2018)

    Google Scholar 

  25. Zhou, Y., Wang, B., Huang, L., Cui, S., Shao, L.: A benchmark for studying diabetic retinopathy: segmentation, grading, and transferability. IEEE Trans. Med. Imaging 40(3), 818–828 (2020)

    Article  Google Scholar 

  26. Zolfaghari, M., Zhu, Y., Gehler, P., Brox, T.: CrossCLR: cross-modal contrastive learning for multi-modal video representations. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1450–1459 (2021)

    Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (No.62076059), the Science Project of Liaoning province under Grant (2021-MS-105) and the 111 Project (B16009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Cao or Jinzhu Yang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1417 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cheng, S., Hou, Q., Cao, P., Yang, J., Liu, X., Zaiane, O.R. (2023). Lesion-Aware Contrastive Learning for Diabetic Retinopathy Diagnosis. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14226. Springer, Cham. https://doi.org/10.1007/978-3-031-43990-2_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43990-2_63

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43989-6

  • Online ISBN: 978-3-031-43990-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics