Vision Transformer Based Multi-class Lesion Detection in IVOCT | SpringerLink
Skip to main content

Vision Transformer Based Multi-class Lesion Detection in IVOCT

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Cardiovascular disease is a high-fatality illness. Intravascular Optical Coherence Tomography (IVOCT) technology can significantly assist in diagnosing and treating cardiovascular diseases. However, locating and classifying lesions from hundreds of IVOCT images is time-consuming and challenging, especially for junior physicians. An automatic lesion detection and classification model is desirable. To achieve this goal, in this work, we first collect an IVOCT dataset, including 2,988 images from 69 IVOCT data and 4,734 annotations of lesions spanning over three categories. Based on the newly-collected dataset, we propose a multi-class detection model based on Vision Transformer, called G-Swin Transformer. The essential part of our model is grid attention which is used to model relations among consecutive IVOCT images. Through extensive experiments, we show that the proposed G-Swin Transformer can effectively localize different types of lesions in IVOCT images, significantly outperforming baseline methods in all evaluation metrics. Our code is available via this link. https://github.com/Shao1Fan/G-Swin-Transformer

Z. Wang and Y. Shao—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 13727
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 17159
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Murphy, S., Xu, J., Kochanek, K., Arias, E., Tejada-Vera, B.: Deaths: final data for 2018 (2021)

    Google Scholar 

  2. Virani, S., et al.: Heart disease and stroke statistics-2021 update: a report from the American heart association. Circulation. 143, e254–e743 (2021)

    Google Scholar 

  3. Huang, D., et al.: Optical coherence tomography. Science 254, 1178–1181 (1991)

    Article  Google Scholar 

  4. Bezerra, H., Costa, M., Guagliumi, G., Rollins, A., Simon, D.: Intracoronary optical coherence tomography: a comprehensive review: clinical and research applications. JACC: Cardiovas. Interv. 2, 1035–1046 (2009)

    Google Scholar 

  5. Jia, H., et al.: In vivo diagnosis of plaque erosion and calcified nodule in patients with acute coronary syndrome by intravascular optical coherence tomography. J. Am. Coll. Cardiol. 62, 1748–1758 (2013)

    Article  Google Scholar 

  6. Li, C., et al.: Comprehensive assessment of coronary calcification in intravascular OCT using a spatial-temporal encoder-decoder network. IEEE Trans. Med. Imaging 41, 857–868 (2021)

    Article  Google Scholar 

  7. Liu, X., Du, J., Yang, J., Xiong, P., Liu, J., Lin, F.: Coronary artery fibrous plaque detection based on multi-scale convolutional neural networks. J. Signal Process. Syst. 92, 325–333 (2020)

    Article  Google Scholar 

  8. Gessert, N., et al.: Automatic plaque detection in IVOCT pullbacks using convolutional neural networks. IEEE Trans. Med. Imaging 38, 426–434 (2018)

    Article  Google Scholar 

  9. Cao, X., Zheng, J., Liu, Z., Jiang, P., Gao, D., Ma, R.: Improved U-net for plaque segmentation of intracoronary optical coherence tomography images. In: Farkaš, I., Masulli, P., Otte, S., Wermter, S. (eds.) ICANN 2021. LNCS, vol. 12893, pp. 598–609. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86365-4_48

    Chapter  Google Scholar 

  10. Regar, E., Ligthart, J., Bruining, N., Soest, G.: The diagnostic value of intracoronary optical coherence tomography. Herz: Kardiovaskulaere Erkraenkungen 36, 417–429 (2011)

    Google Scholar 

  11. Kubo, T., Xu, C., Wang, Z., Ditzhuijzen, N., Bezerra, H.: Plaque and thrombus evaluation by optical coherence tomography. Int. J. Cardiovasc. Imaging 27, 289–298 (2011)

    Article  Google Scholar 

  12. Falk, E., Nakano, M., Bentzon, J., Finn, A., Virmani, R.: Update on acute coronary syndromes: the pathologists’ view. Eur. Heart J. 34, 719–728 (2013)

    Article  Google Scholar 

  13. Saw, J.: Spontaneous coronary artery dissection. Can. J. Cardiol. 29, 1027–1033 (2013)

    Article  Google Scholar 

  14. Pepe, A., et al.: Detection, segmentation, simulation and visualization of aortic dissections: a review. Med. Image Anal. 65, 101773 (2020)

    Article  Google Scholar 

  15. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances In Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  16. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. ArXiv Preprint ArXiv:1804.02767 (2018)

  17. Jocher, G.: YOLOv5 by ultralytics (2020). https://github.com/ultralytics/yolov5

  18. Lin, T., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference On Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  19. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. Proceedings of the IEEE/CVF International Conference On Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

Download references

Acknowledgement

This work is supported by the National Key Research and Development Project of China (No. 2022ZD0117801).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Su Wang or Qian Yu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 20834 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Z. et al. (2023). Vision Transformer Based Multi-class Lesion Detection in IVOCT. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14225. Springer, Cham. https://doi.org/10.1007/978-3-031-43987-2_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43987-2_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43986-5

  • Online ISBN: 978-3-031-43987-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics