Self-supervised Polyp Re-identification in Colonoscopy | SpringerLink
Skip to main content

Self-supervised Polyp Re-identification in Colonoscopy

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Computer-aided polyp detection (CADe) is becoming a standard, integral part of any modern colonoscopy system. A typical colonoscopy CADe detects a polyp in a single frame and does not track it through the video sequence. Yet, many downstream tasks including polyp characterization (CADx), quality metrics, automatic reporting, require aggregating polyp data from multiple frames. In this work we propose a robust long term polyp tracking method based on re-identification by visual appearance. Our solution uses an attention-based self-supervised ML model, specifically designed to leverage the temporal nature of video input. We quantitatively evaluate method’s performance and demonstrate its value for the CADx task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 13727
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 17159
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmed, E., Jones, M., Marks, T.K.: An improved deep learning architecture for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3908–3916 (2015)

    Google Scholar 

  2. Biffi, C., Salvagnini, P., Dinh, N.N., Hassan, C., Sharma, P., Cherubini, A.: A novel ai device for real-time optical characterization of colorectal polyps. NPJ Digital Med. 5(1), 84 (2022)

    Article  Google Scholar 

  3. Brand, M., et al.: Frame-by-frame analysis of a commercially available artificial intelligence polyp detection system in full-length colonoscopies. Digestion 103(5), 378–385 (2022)

    Article  Google Scholar 

  4. Breckon, T.P., Alsehaim, A.: Not 3d re-id: simple single stream 2d convolution for robust video re-identification. In: 2020 25th International conference on pattern recognition (ICPR), pp. 5190–5197. IEEE (2021)

    Google Scholar 

  5. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  6. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  7. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  8. Gao, J., Nevatia, R.: Revisiting temporal modeling for video-based person reid. arXiv preprint arXiv:1805.02104 (2018)

  9. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

  10. He, T., Jin, X., Shen, X., Huang, J., Chen, Z., Hua, X.S.: Dense interaction learning for video-based person re-identification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1490–1501 (2021)

    Google Scholar 

  11. Hermans, A., Beyer, L., Leibe, B.: In defense of the triplet loss for person re-identification. arXiv preprint arXiv:1703.07737 (2017)

  12. Hirsch, R., et al.: Self-supervised learning for endoscopic video analysis. In: International Conference on Medical Image Computing and Computer-Assisted Intervention (2023)

    Google Scholar 

  13. Lachter, J., et al.: Novel artificial intelligence-enabled deep learning system to enhance adenoma detection: a prospective randomized controlled study. iGIE (2023)

    Google Scholar 

  14. Livovsky, D.M., et al.: Detection of elusive polyps using a large-scale artificial intelligence system (with videos). Gastrointest. Endosc. 94(6), 1099–1109 (2021)

    Article  Google Scholar 

  15. Ou, S., Gao, Y., Zhang, Z., Shi, C.: Polyp-yolov5-tiny: a lightweight model for real-time polyp detection. In: 2021 IEEE 2nd International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA), vol. 2, pp. 1106–1111. IEEE (2021)

    Google Scholar 

  16. Pacal, I., Karaboga, D.: A robust real-time deep learning based automatic polyp detection system. Comput. Biol. Med. 134, 104519 (2021)

    Article  Google Scholar 

  17. Qian, R., et al.: Spatiotemporal contrastive video representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6964–6974 (2021)

    Google Scholar 

  18. Raghu, M., Zhang, C., Kleinberg, J., Bengio, S.: Transfusion: understanding transfer learning for medical imaging (2019)

    Google Scholar 

  19. Rajpurkar, P., et al.: Chexnet: radiologist-level pneumonia detection on chest x-rays with deep learning (2017)

    Google Scholar 

  20. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv 2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  21. Seeland, M., Mäder, P.: Multi-view classification with convolutional neural networks. PLoS ONE 16(1), e0245230 (2021)

    Article  Google Scholar 

  22. Van Rijn, J.C., Reitsma, J.B., Stoker, J., Bossuyt, P.M., Van Deventer, S.J., Dekker, E.: Polyp miss rate determined by tandem colonoscopy: a systematic review. Official J. Am. College Gastroenterology| ACG 101(2), 343–350 (2006)

    Google Scholar 

  23. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  24. Wang, F., Liu, H.: Understanding the behaviour of contrastive loss. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2495–2504 (2021)

    Google Scholar 

  25. You, Y., et al.: Large batch optimization for deep learning: training bert in 76 minutes. arXiv preprint arXiv:1904.00962 (2019)

  26. Yu, T., et al.: An end-to-end tracking method for polyp detectors in colonoscopy videos. Artif. Intell. Med. 131, 102363 (2022)

    Article  Google Scholar 

  27. Zhang, Y., et al.: Bytetrack: multi-object tracking by associating every detection box. In: Computer Vision-ECCV 2022: 17th European Conference, Tel Aviv, Israel, 23–27 October 2022, Proceedings, Part XXII, pp. 1–21. Springer (2022). https://doi.org/10.1007/978-3-031-20047-2_1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Livne .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1673 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Intrator, Y., Aizenberg, N., Livne, A., Rivlin, E., Goldenberg, R. (2023). Self-supervised Polyp Re-identification in Colonoscopy. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14224. Springer, Cham. https://doi.org/10.1007/978-3-031-43904-9_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43904-9_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43903-2

  • Online ISBN: 978-3-031-43904-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics