Abstract
Computer-aided polyp detection (CADe) is becoming a standard, integral part of any modern colonoscopy system. A typical colonoscopy CADe detects a polyp in a single frame and does not track it through the video sequence. Yet, many downstream tasks including polyp characterization (CADx), quality metrics, automatic reporting, require aggregating polyp data from multiple frames. In this work we propose a robust long term polyp tracking method based on re-identification by visual appearance. Our solution uses an attention-based self-supervised ML model, specifically designed to leverage the temporal nature of video input. We quantitatively evaluate method’s performance and demonstrate its value for the CADx task.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahmed, E., Jones, M., Marks, T.K.: An improved deep learning architecture for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3908–3916 (2015)
Biffi, C., Salvagnini, P., Dinh, N.N., Hassan, C., Sharma, P., Cherubini, A.: A novel ai device for real-time optical characterization of colorectal polyps. NPJ Digital Med. 5(1), 84 (2022)
Brand, M., et al.: Frame-by-frame analysis of a commercially available artificial intelligence polyp detection system in full-length colonoscopies. Digestion 103(5), 378–385 (2022)
Breckon, T.P., Alsehaim, A.: Not 3d re-id: simple single stream 2d convolution for robust video re-identification. In: 2020 25th International conference on pattern recognition (ICPR), pp. 5190–5197. IEEE (2021)
Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)
Gao, J., Nevatia, R.: Revisiting temporal modeling for video-based person reid. arXiv preprint arXiv:1805.02104 (2018)
He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38
He, T., Jin, X., Shen, X., Huang, J., Chen, Z., Hua, X.S.: Dense interaction learning for video-based person re-identification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1490–1501 (2021)
Hermans, A., Beyer, L., Leibe, B.: In defense of the triplet loss for person re-identification. arXiv preprint arXiv:1703.07737 (2017)
Hirsch, R., et al.: Self-supervised learning for endoscopic video analysis. In: International Conference on Medical Image Computing and Computer-Assisted Intervention (2023)
Lachter, J., et al.: Novel artificial intelligence-enabled deep learning system to enhance adenoma detection: a prospective randomized controlled study. iGIE (2023)
Livovsky, D.M., et al.: Detection of elusive polyps using a large-scale artificial intelligence system (with videos). Gastrointest. Endosc. 94(6), 1099–1109 (2021)
Ou, S., Gao, Y., Zhang, Z., Shi, C.: Polyp-yolov5-tiny: a lightweight model for real-time polyp detection. In: 2021 IEEE 2nd International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA), vol. 2, pp. 1106–1111. IEEE (2021)
Pacal, I., Karaboga, D.: A robust real-time deep learning based automatic polyp detection system. Comput. Biol. Med. 134, 104519 (2021)
Qian, R., et al.: Spatiotemporal contrastive video representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6964–6974 (2021)
Raghu, M., Zhang, C., Kleinberg, J., Bengio, S.: Transfusion: understanding transfer learning for medical imaging (2019)
Rajpurkar, P., et al.: Chexnet: radiologist-level pneumonia detection on chest x-rays with deep learning (2017)
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv 2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)
Seeland, M., Mäder, P.: Multi-view classification with convolutional neural networks. PLoS ONE 16(1), e0245230 (2021)
Van Rijn, J.C., Reitsma, J.B., Stoker, J., Bossuyt, P.M., Van Deventer, S.J., Dekker, E.: Polyp miss rate determined by tandem colonoscopy: a systematic review. Official J. Am. College Gastroenterology| ACG 101(2), 343–350 (2006)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems 30 (2017)
Wang, F., Liu, H.: Understanding the behaviour of contrastive loss. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2495–2504 (2021)
You, Y., et al.: Large batch optimization for deep learning: training bert in 76 minutes. arXiv preprint arXiv:1904.00962 (2019)
Yu, T., et al.: An end-to-end tracking method for polyp detectors in colonoscopy videos. Artif. Intell. Med. 131, 102363 (2022)
Zhang, Y., et al.: Bytetrack: multi-object tracking by associating every detection box. In: Computer Vision-ECCV 2022: 17th European Conference, Tel Aviv, Israel, 23–27 October 2022, Proceedings, Part XXII, pp. 1–21. Springer (2022). https://doi.org/10.1007/978-3-031-20047-2_1
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Intrator, Y., Aizenberg, N., Livne, A., Rivlin, E., Goldenberg, R. (2023). Self-supervised Polyp Re-identification in Colonoscopy. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14224. Springer, Cham. https://doi.org/10.1007/978-3-031-43904-9_57
Download citation
DOI: https://doi.org/10.1007/978-3-031-43904-9_57
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43903-2
Online ISBN: 978-3-031-43904-9
eBook Packages: Computer ScienceComputer Science (R0)