Elongated Physiological Structure Segmentation via Spatial and Scale Uncertainty-Aware Network | SpringerLink
Skip to main content

Elongated Physiological Structure Segmentation via Spatial and Scale Uncertainty-Aware Network

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14223))

  • 7206 Accesses

Abstract

Robust and accurate segmentation for elongated physiological structures is challenging, especially in the ambiguous region, such as the corneal endothelium microscope image with uneven illumination or the fundus image with disease interference. In this paper, we present a spatial and scale uncertainty-aware network (SSU-Net) that fully uses both spatial and scale uncertainty to highlight ambiguous regions and integrate hierarchical structure contexts. First, we estimate epistemic and aleatoric spatial uncertainty maps using Monte Carlo dropout to approximate Bayesian networks. Based on these spatial uncertainty maps, we propose the gated soft uncertainty-aware (GSUA) module to guide the model to focus on ambiguous regions. Second, we extract the uncertainty under different scales and propose the multi-scale uncertainty-aware (MSUA) fusion module to integrate structure contexts from hierarchical predictions, strengthening the final prediction. Finally, we visualize the uncertainty map of final prediction, providing interpretability for segmentation results. Experiment results show that the SSU-Net performs best on cornea endothelial cell and retinal vessel segmentation tasks. Moreover, compared with counterpart uncertainty-based methods, SSU-Net is more accurate and robust.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, J., et al.: Transunet: transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)

  2. Gal, Y., Ghahramani, Z.: Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In: Balcan, M.F., Weinberger, K.Q. (eds.) Proceedings of ICML. Proceedings of Machine Learning Research, vol. 48, pp. 1050–1059. PMLR, New York, New York, USA (20–22 Jun 2016)

    Google Scholar 

  3. Gawlikowski, J., et al.: A survey of uncertainty in deep neural networks. arXiv preprint arXiv:2107.03342 (2021)

  4. Guo, Changlu, et al.: Sa-unet: spatial attention u-net for retinal vessel segmentation. In: Proceedings of ICPR, pp. 1236–1242 (2021)

    Google Scholar 

  5. Jin, K., et al.: Fives: a fundus image dataset for artificial intelligence based vessel segmentation. Sci. Data 9(1), 475 (2022)

    Article  MathSciNet  Google Scholar 

  6. Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? Proc. NeurIPS 30 (2017)

    Google Scholar 

  7. Kohl, S., et al.: A probabilistic u-net for segmentation of ambiguous images. Proc. of NeurIPS 31 (2018)

    Google Scholar 

  8. Lakshminarayanan, B., et al.: Simple and scalable predictive uncertainty estimation using deep ensembles. Proc. of NeurIPS 30 (2017)

    Google Scholar 

  9. Lee, J., et al.: Method to minimize the errors of AI: quantifying and exploiting uncertainty of deep learning in brain tumor segmentation. Sensors 22(6), 2406 (2022)

    Article  MathSciNet  Google Scholar 

  10. Leibig, C., et al.: Leveraging uncertainty information from deep neural networks for disease detection. Sci. Rep. 7(1), 1–14 (2017)

    Article  Google Scholar 

  11. Li, L., et al.: Iternet: Retinal image segmentation utilizing structural redundancy in vessel networks. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3656–3665 (2020)

    Google Scholar 

  12. Liu, W., et al.: Full-resolution network and dual-threshold iteration for retinal vessel and coronary angiograph segmentation. IEEE J. Biomed. Health Inform. 26(9), 4623–4634 (2022)

    Article  Google Scholar 

  13. Mehrtash, A., et al.: Confidence calibration and predictive uncertainty estimation for deep medical image segmentation. IEEE Trans. Med. Imaging 39(12), 3868–3878 (2020)

    Article  Google Scholar 

  14. Mou, L., et al.: Cs2-net: deep learning segmentation of curvilinear structures in medical imaging. Med. Image Anal. 67, 101874 (2021)

    Article  Google Scholar 

  15. Neal, R.M.: Bayesian learning for neural networks. IEEE Trans. Neural Netw. (1994)

    Google Scholar 

  16. Oktay, O., et al.: Attention u-net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)

  17. Pearce, T., et al.: Understanding softmax confidence and uncertainty. arXiv preprint arXiv:2106.04972 (2021)

  18. Pidaparthy, H., et al.: Automatic play segmentation of hockey videos. In: Proceedings of CVPR, pp. 4585–4593 (2021)

    Google Scholar 

  19. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  20. Ruggeri, A., et al.: A system for the automatic estimation of morphometric parameters of corneal endothelium in Alizarine red-stained images. Br. J. Ophthalmol. 94(5), 643–647 (2010)

    Article  Google Scholar 

  21. Selig, B., et al.: Fully automatic evaluation of the corneal endothelium from in vivo confocal microscopy. BMC Med. Imaging 15(1), 1–15 (2015)

    Article  MathSciNet  Google Scholar 

  22. Taha, A.A., Hanbury, A.: Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Med. Imaging 15(1), 1–28 (2015)

    Article  Google Scholar 

  23. Wang, L., et al.: Medical matting: a new perspective on medical segmentation with uncertainty. In: Proceedings of MICCAI, pp. 573–583 (2021)

    Google Scholar 

  24. Xie, Y., et al.: Uncertainty-aware cascade network for ultrasound image segmentation with ambiguous boundary. In: Proceedings of MICCAI, pp. 268–278 (2022)

    Google Scholar 

  25. Yang, H., et al.: Uncertainty-guided lung nodule segmentation with feature-aware attention. In: Proceedings of MICCAI, pp. 44–54 (2022)

    Google Scholar 

  26. Zhang, Y., et al.: A multi-branch hybrid transformer network for corneal endothelial cell segmentation. In: Proceedings of MICCAI, pp. 99–108 (2021)

    Google Scholar 

  27. Zhao, Y., et al.: Automated tortuosity analysis of nerve fibers in corneal confocal microscopy. IEEE Trans. Med. Imaging 39(9), 2725–2737 (2020)

    Article  Google Scholar 

  28. Zhou, L., et al.: D-linknet: linknet with pretrained encoder and dilated convolution for high resolution satellite imagery road extraction. In: Proceedings of CVPR, pp. 182–186 (June 2018)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by General Program of National Natural Science Foundation of China (Grant No. 82272086), Guangdong Provincial Department of Education (Grant No. 2020ZDZX3043), Shenzhen Natural Science Fund (JCYJ20200109140820699), the Stable Support Plan Program (20200925174052004), the National Research Foundation, Singapore under its AI Singapore Programme (AISG Award No: AISG2-TC-2021-003), and A*STAR Advanced Manufacturing and Engineering (AME) Programmatic Fund (A20H4b0141) Central Research Fund (CRF).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Risa Higashita or Jiang Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y. et al. (2023). Elongated Physiological Structure Segmentation via Spatial and Scale Uncertainty-Aware Network. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14223. Springer, Cham. https://doi.org/10.1007/978-3-031-43901-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43901-8_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43900-1

  • Online ISBN: 978-3-031-43901-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics