Anatomical-Aware Point-Voxel Network for Couinaud Segmentation in Liver CT | SpringerLink
Skip to main content

Anatomical-Aware Point-Voxel Network for Couinaud Segmentation in Liver CT

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Accurately segmenting the liver into anatomical segments is crucial for surgical planning and lesion monitoring in CT imaging. However, this is a challenging task as it is defined based on vessel structures, and there is no intensity contrast between adjacent segments in CT images. In this paper, we propose a novel point-voxel fusion framework to address this challenge. Specifically, we first segment the liver and vessels from the CT image, and generate 3D liver point clouds and voxel grids embedded with vessel structure prior. Then, we design a multi-scale point-voxel fusion network to capture the anatomical structure and semantic information of the liver and vessels, respectively, while also increasing important data access through vessel structure prior. Finally, the network outputs the classification of Couinaud segments in the continuous liver space, producing a more accurate and smooth 3D Couinaud segmentation mask. Our proposed method outperforms several state-of-the-art methods, both point-based and voxel-based, as demonstrated by our experimental results on two public liver datasets. Code, datasets, and models are released at https://github.com/xukun-zhang/Couinaud-Segmentation.

X. Zhang and Y. Liu—Contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11210
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14013
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arya, Z., Ridgway, G., Jandor, A., Aljabar, P.: Deep learning-based landmark localisation in the liver for Couinaud segmentation. In: Papież, B.W., Yaqub, M., Jiao, J., Namburete, A.I.L., Noble, J.A. (eds.) MIUA 2021. LNCS, vol. 12722, pp. 227–237. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-80432-9_18

    Chapter  Google Scholar 

  2. Bilic, P., et al.: The liver tumor segmentation benchmark (LiTS). Med. Image Anal. 84, 102680 (2023)

    Article  Google Scholar 

  3. Bismuth, H.: Surgical anatomy and anatomical surgery of the liver. World J. Surg. 6, 3–9 (1982)

    Article  Google Scholar 

  4. Boltcheva, D., Passat, N., Agnus, V., Jacob-Da Col, M.A., Ronse, C., Soler, L.: Automatic anatomical segmentation of the liver by separation planes. In: Medical Imaging 2006: Visualization, Image-Guided Procedures, and Display, vol. 6141, pp. 383–394. SPIE (2006)

    Google Scholar 

  5. Ching, T., et al.: Opportunities and obstacles for deep learning in biology and medicine. J. R. Soc. Interface 15(141), 20170387 (2018)

    Article  Google Scholar 

  6. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016, Part II. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  7. Couinaud, C.: Liver anatomy: portal (and suprahepatic) or biliary segmentation. Dig. Surg. 16(6), 459–467 (1999)

    Article  Google Scholar 

  8. Huang, S., Wang, B., Cheng, M., Wu, W., Huang, X., Ju, Y.: A fast method to segment the liver according to Couinaud’s classification. In: Gao, X., Müller, H., Loomes, M.J., Comley, R., Luo, S. (eds.) MIMI 2007. LNCS, vol. 4987, pp. 270–276. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79490-5_33

    Chapter  Google Scholar 

  9. Jia, X., et al.: Boundary-aware dual attention guided liver segment segmentation model. KSII Trans. Internet Inf. Syst. (TIIS) 16(1), 16–37 (2022)

    MathSciNet  Google Scholar 

  10. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  11. Liu, X., et al.: Secular trend of cancer death and incidence in 29 cancer groups in china, 1990–2017: a joinpoint and age-period-cohort analysis. Cancer Manage. Res. 12, 6221 (2020)

    Article  Google Scholar 

  12. Liu, Z., Tang, H., Lin, Y., Han, S.: Point-voxel CNN for efficient 3d deep learning. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  13. Nelson, R., Chezmar, J., Sugarbaker, P., Murray, D., Bernardino, M.: Preoperative localization of focal liver lesions to specific liver segments: utility of CT during arterial portography. Radiology 176(1), 89–94 (1990)

    Article  Google Scholar 

  14. Orcutt, S.T., Anaya, D.A.: Liver resection and surgical strategies for management of primary liver cancer. Cancer Control 25(1), 1073274817744621 (2018)

    Article  Google Scholar 

  15. Pla-Alemany, S., Romero, J.A., Santabárbara, J.M., Aliaga, R., Maceira, A.M., Moratal, D.: Automatic multi-atlas liver segmentation and Couinaud classification from CT volumes. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 2826–2829. IEEE (2021)

    Google Scholar 

  16. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  17. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015, Part III. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  18. Shen, D., Wu, G., Suk, H.I.: Deep learning in medical image analysis. Ann. Rev. Biomed. Eng. 19, 221–248 (2017)

    Article  Google Scholar 

  19. Soler, L., et al.: Fully automatic anatomical, pathological, and functional segmentation from CT scans for hepatic surgery. Comput. Aided Surg. 6(3), 131–142 (2001)

    Article  Google Scholar 

  20. Soler, L., et al.: 3D image reconstruction for comparison of algorithm database: a patient specific anatomical and medical image database. IRCAD, Strasbourg, France, Technical report, 1(1) (2010)

    Google Scholar 

  21. Tian, J., Liu, L., Shi, Z., Xu, F.: Automatic Couinaud segmentation from CT volumes on liver using GLC-UNet. In: Suk, H.-I., Liu, M., Yan, P., Lian, C. (eds.) MLMI 2019. LNCS, vol. 11861, pp. 274–282. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32692-0_32

    Chapter  Google Scholar 

Download references

Acknowledgement

This project was funded by the National Natural Science Foundation of China (82090052, 82090054, 82001917 and 81930053), Clinical Research Plan of Shanghai Hospital Development Center (No. 2020CR3004A), and National Key Research and Development Program of China under Grant (2021YFC2500402).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiming Cui , Xiaoying Wang or Lihua Zhang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2170 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, X. et al. (2023). Anatomical-Aware Point-Voxel Network for Couinaud Segmentation in Liver CT. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14222. Springer, Cham. https://doi.org/10.1007/978-3-031-43898-1_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43898-1_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43897-4

  • Online ISBN: 978-3-031-43898-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics