Abstract
The environmental transition has become a crucial element in the European Commission agenda. In this context, a key role is play by the electrification of the mobility that is viewed as a feasible alternative respect to the traditional fossil fuel paradigm, due to significant energy benefits. However, the scarcity availability of raw materials for producing battery packs and their concentration in few specific areas of the world, is determining high level of uncertainties and vulnerability in the supply chains of European car manufacturers. In particular, they are heavily facing the challenges that this transition is posing, specifically considering the reorganization and the structure of the associated supply chain. Therefore, this paper aims at capturing the perspectives of automotive industry about the different stages of the battery supply chain in the electric vehicle market. To this end, a questionnaire survey has been administrated to a set of identified automotive professionals. The obtained results underline that procurement, production and recycling of batteries are the most critical steps. On the contrary, the transport and the storage of the batteries are seen less crucial. This research is intended to stimulate future studies on innovative supply chains able to better manage batteries, and it is aimed at supporting car producers on designing more accurately their supply chain and to support decision makers in more effectively develop policy in the field of the electric mobility transition.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Kumar, P., Singh, R.K., Paul, J., Sinha, O.: Analyzing challenges for sustainable supply chain of electric vehicle batteries using a hybrid approach of Delphi and Best-Worst Method. Resour. Conserv. Recycl. 175, 105879 (2021)
Shafique, M., Luo, X.: Environmental life cycle assessment of battery electric vehicles from the current and future energy mix perspective. J. Environ. Manag. 303, 114050 (2022)
Rafele, C., Mangano, G., Cagliano, A.C., Carlin, A.: Assessing batteries supply chain networks for low impact vehicles. Int. J. Energy Sect. Manag. 14(1), 148–171 (2020)
Tsiropoulos, I., Tarvydas, D., Lebedeva, N.: Li-ion batteries for mobility and stationary storage applications. EUR 29440 EN, Publications Office of the European Union, Luxembourg (2018)
Tamba, M., et al.: Economy-wide impacts of road transport electrification in the EU. Technol. Forecast. Soc. Change 182, 121803 (2022)
Kwade, A., Diekmann, J.: Recycling of Lithium-Ion Batteries. The LithoRec Way. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-70572-9
Marcos, J.T., Scheller, C., Godina, R., Spengler, T.S., Carvalho, H.: Sources of uncertainty in the closed-loop supply chain of lithium-ion batteries for electric vehicles. Clean. Logist. Supply Chain 1, 100006 (2021)
Rafele, C., Gallo, C., Mangano, G., Cagliano, A.C., Carlin, A.: Low impact vehicle battery supply chains: assessing the impacts of alternative procurement strategies. Int. J. Electr. Hybrid Veh. 13(2), 127–144 (2021)
Latini, D., et al.: A comprehensive review and classification of unit operations with assessment of outputs quality in lithium-ion battery recycling. J. Power Sources 546, 231979 (2022)
Pavlínek, P.: Transition of the automotive industry towards electric vehicle production in the east European integrated periphery. Empirica 50(1), 35–73 (2023)
Galati, A., Adamashvili, N., Crescimanno, M.: A feasibility analysis on adopting electric vehicles in the short food supply chain based on GHG emissions and economic costs estimations. Sustain. Prod. Consumption 36, 49–61 (2023)
European Commission: European Battery Alliance (2018). https://ec.europa.eu/growth/industry/policy/european-battery-alliance_en. Accessed 12 Mar 2023
Abdelbaky, M., Peeters, J.R., Dewulf, W.: On the influence of second use, future battery technologies, and battery lifetime on the maximum recycled content of future electric vehicle batteries in Europe. Waste Manag. 125, 1–9 (2021)
Razmjoo, A., et al.: A comprehensive study on the expansion of electric vehicles in Europe. Appl. Sci. 12(22), 11656 (2022)
Oliveira, L., Messagie, M., Rangaraju, S., Sanfelix, J., Hernandez Rivas, M., Van Mierlo, J.: Key issues of lithium-ion batteries – from resource depletion to environmental performance indicators. J. Clean. Prod. 108(Part A), 354–362 (2015)
Kastanaki, E., Giannis, A.: Dynamic estimation of end-of-life electric vehicle batteries in the EU-27 considering reuse, remanufacturing and recycling options. J. Clean. Prod. 393, 136349 (2023)
Zhu, M., Liu, Z., Li, J., Zhu, S.X.: Electric vehicle battery capacity allocation and recycling with downstream competition. Eur. J. Oper. Res. 283(1), 365–379 (2020)
Egbue, O., Long, S.: Critical issues in the supply chain of lithium for electric vehicle batteries. Eng. Manag. J. 24(3), 52–62 (2012)
Kotak, Y., et al.: End of electric vehicle batteries: reuse vs. recycle. Energies 14(8), 2217 (2021)
Albertsen, L., Richter, J.L., Peck, P., Dalhammar, C., Plepys, A.: Circular business models for electric vehicle lithium-ion batteries: an analysis of current practices of vehicle manufacturers and policies in the EU. Resourc. Conserv. Recycl. 172, 105658 (2021)
Campanella, D., Belanger, D., Paolella, A.: Beyond garnets, phosphates and phosphosulfides solid electrolytes: new ceramic perspectives for all solid lithium metal batteries. J. Power Sources 482, 228949 (2021)
Fan, Z.-P., Chen, Z., Zhao, X.: Battery outsourcing decision and product choice strategy of an electric vehicle manufacturer. Int. Trans. Oper. Res. 29, 1943–1969 (2022)
Zhao, X., Peng, B., Zheng, C., Wan, A.: Closed-loop supply chain pricing strategy for electric vehicle batteries recycling in China. Environ. Dev. Sustain. 24, 7725–7752 (2022)
EU Commission. Study on the EU’s List of Critical Raw Materials (2020) Final Report. European Commission: Brussels, Belgium (2020)
Picatoste, A., Justel, D., Mendoza, J.M.F.: Circularity and life cycle environmental impact assessment of batteries for electric vehicles: industrial challenges, best practices and research guidelines. Renew. Sustain. Energy Rev. 169, 112941 (2022)
Babbitt, C.W.: Sustainability perspectives on lithium-ion batteries. Clean Technol. Environ. Policy 22, 1213–1214 (2020)
Popien, J.-L., Thies, C., Spengler, T.S.: Exploring recycling options in battery supply chains – a life cycle sustainability assessment. Proc. CIRP 105, 434–439 (2022)
Gu, X., Ieromonachou, P., Zhou, L., Tseng, M.L.: Developing pricing strategy to optimise total profits in an electric vehicle battery closed loop supply chain. J. Clean. Prod. 203, 376–385 (2018)
Chai, J., Qian, Z., Wang, F., Zhu, J.: Process innovation for green product in a closed loop supply chain with remanufacturing. Ann. Oper. Res. (2021). https://doi.org/10.1007/s10479-020-03888-y
Nurdiawati, A., Kumar Agrawal, T.: Creating a circular EV battery value chain: End-of-life strategies and future perspective. Resour. Conserv. Recycl. 185, 106484 (2022)
Tarne, P., Lehmann, A., Kantner, M., Finkbeiner, M.: Introducing a product sustainability budget at an automotive company—One option to increase the use of LCSA results in decision-making processes. Int. J. Life Cycle Assess. 24, 1461–1479 (2019)
Arditi, D., Mangano, G., De Marco, A.: Assessing the smartness of buildings. Facilities 33(9/10), 553–572 (2015)
Liu, H., et al.: Tracing the technology development and trends of hard carbon anode materials-a market and patent analysis. J. Energy Storage 56, 105964 (2022)
Coffin, D., Horowitz, J.: The supply chain for electric vehicle batteries. Int. J. Commer. Econ. (2018). https://www.usitc.gov/journals
Joshi, A., Sharma, R., Baral, B.: Comparative life cycle assessment of conventional combustion engine vehicle, battery electric vehicle and fuel cell electric vehicle in Nepal. J. Clean. Prod. 379, 134407 (2022)
Weil, M., Ziemann, S., Peters, J.: The issue of metal resources in Li-ion batteries for electric vehicles. In: Pistoia, G., Liaw, B. (eds.) Behaviour of Lithium-Ion Batteries in Electric Vehicles: Battery Health, Performance, Safety, and Cost. GREEN, pp. 59–74. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-69950-9_3
Mauler, L., Lou, X., Duffner, F., Leker, J.:Technological innovation vs. tightening raw material markets: falling battery costs put at risk. Energy Adv. 1(3), 136–145 (2022)
European Commission. Critical Raw Materials Resilience: charting a Path towards greater Security and Sustainability. European Commission, Brussels, Belgium (2020)
Maisel, F., Neef, C., Marscheider-Weidemann, F., Nissen, N.F.: A forecast on future raw material demand and recycling potential of lithium-ion batteries in electric vehicles. Resour. Conserv. Recycl. 192, 106920 (2023)
Cagliano, A.C., Mangano, G., Rafele, C., Carlin, A.: Lithium-ion battery procurement strategies: evidence from the automotive field. IFAC-PapersOnLine 53(2), 12688–12694 (2020)
Sommerville, R., Shaw-Stewart, J., Goodship, V., Rowson, N., Kendrick, E.: A review of physical processes used in the safe recycling of lithium ion batteries. Sustain. Mater. Technol. 25, e00197 (2020)
Amato, A., Becci, A., Villen-Guzman, M., Vereda-Alonso, C., Beolchini, F.: Challenges for sustainable lithium supply: a critical review. J. Clean. Prod. 300, 12695 (2021)
Santos, G., Smith, O.: Electric vehicles and the energy generation mix in the UK: 2020–2050. Energy Rep. 9, 5612–5627 (2023)
Petavratzi, E., Gunn, G.: Decarbonising the automotive sector: a primary raw material perspective on targets and timescales. Miner. Econ. 1–17 (2022). https://doi.org/10.1007/s13563-022-00351-1
Khan, S.A., Mubarik, M.S., Paul, S.K.: Analyzing cause and effect relationships among drivers and barriers to circular economy implementation in the context of an emerging economy. J. Clean. Prod. 364, 132618 (2022)
Demartini, M., Ferrari, M., Govindan, K., Tonelli, F.: The transition to electric vehicles and a net zero economy: a model based on circular economy, stakeholder theory, and system thinking approach. J. Clean. Prod. 410, 137031 (2023)
Dunlap, A., Riquito, M.: Social warfare for lithium extraction? Open-pit lithium mining, counterinsurgency tactics and enforcing green extractivism in northern Portugal. Energy Res. Soc. Sci. 95, 102912 (2023)
Schulz-Mönninghoff, M., Evans, S.: Key tasks for ensuring economic viability of circular projects: learnings from a real-world project on repurposing electric vehicle batteries. Sustain. Prod. Consumption 35, 559–575 (2023)
Acknowledgement
This work was developed in collaboration with Paul Grieumard, Lea Issa and Valentine Pyt, master students at the Industrial Engineering Department of INSA Lyon.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 IFIP International Federation for Information Processing
About this paper
Cite this paper
Botta-Genoulaz, V., Mangano, G. (2023). Assessment of the Main Criticalities in the Automotive Battery Supply Chain: A Professionals’ Perspective. In: Alfnes, E., Romsdal, A., Strandhagen, J.O., von Cieminski, G., Romero, D. (eds) Advances in Production Management Systems. Production Management Systems for Responsible Manufacturing, Service, and Logistics Futures. APMS 2023. IFIP Advances in Information and Communication Technology, vol 692. Springer, Cham. https://doi.org/10.1007/978-3-031-43688-8_37
Download citation
DOI: https://doi.org/10.1007/978-3-031-43688-8_37
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43687-1
Online ISBN: 978-3-031-43688-8
eBook Packages: Computer ScienceComputer Science (R0)