Adopting Circular Economy Paradigm to Waste Prevention: Investigating Waste Drivers in Vegetable Supply Chains | SpringerLink
Skip to main content

Adopting Circular Economy Paradigm to Waste Prevention: Investigating Waste Drivers in Vegetable Supply Chains

  • Conference paper
  • First Online:
Advances in Production Management Systems. Production Management Systems for Responsible Manufacturing, Service, and Logistics Futures (APMS 2023)

Abstract

Waste is a main issue in vegetable supply chains. Many studies focus on food loss in the context of waste, however, neglecting the losses due to farm inputs, handling & inter-relational inefficiencies, and suboptimal resource (labour, time, etc.) & energy consumption. This study aims to address the issue of waste in vegetable supply chains by focusing on the logistics aspect of the supply chain. The study employs the Delphi Technique and Interpretive Structural Modeling to identify and rank the main waste drivers and sub-drivers. The results reveal that the Collaboration Gap, Coordination Issues, Communication Gap, Unavailability of Cold Storages, and Unavailability of Handling Equipment are the main waste sub-drivers. Interestingly, three out of these five sub-drivers fall under the waste driver of connectivity-related drivers, emphasising the importance of connectivity in reducing waste. The study suggests circular economy-driven strategies and techniques such as circular business models, direct marketplaces, traceability systems, collaborative transportation and partnerships, equipment sharing systems or rental programs, and biogas-based cold storage systems to mitigate the impact of these identified waste sub-drivers. The findings of this study can guide stakeholders and policymakers in developing economies to reduce waste in vegetable supply chains. By addressing the identified waste sub-drivers, the supply chain can become more efficient, cost-effective, and sustainable, leading to significant economic and environmental benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Negi, S., Anand, N.: Supply chain of fruits & vegetables agribusiness in Uttarakhand (India): major issues and challenges. J. Supply Chain Manag. Syst. 4(1–2), 43–57 (2015)

    Google Scholar 

  2. Surucu-Balci, E., Tuna, O.: Investigating logistics-related food loss drivers: a study on fresh fruit and vegetable supply chain. J. Cleaner Prod. 318, 128561 (2021). https://doi.org/10.1016/j.jclepro.2021.128561

    Article  Google Scholar 

  3. Raut, R.D., Gardas, B.B., Narwane, V.S., Narkhede, B.E.: Improvement in the food losses in fruits and vegetable supply chain – a perspective of cold third-party logistics approach. Oper. Res. Perspect. 6, 100117 (2019). https://doi.org/10.1016/j.orp.2019.100117

    Article  MathSciNet  Google Scholar 

  4. De Steur, H., Wesana, J., Dora, M.K., Pearce, D., Gellynck, X.: Applying value stream mapping to reduce food losses and wastes in supply chains: a systematic review. Waste Manag. 58, 359–368 (2016). https://doi.org/10.1016/j.wasman.2016.08.025

    Article  Google Scholar 

  5. Lipinski, B., Hanson, J., Lomax, L., Kitinoja, R.W., Searchinger, T.: Toward a sustainable food system Reducing food loss and waste. World Resource Institute, no. June, pp. 1–40 (2016)

    Google Scholar 

  6. Raut, R., Gardas, B.B.: Sustainable logistics barriers of fruits and vegetables. Benchmark.: Int. J. 25(8), 2589–2610 (2018). https://doi.org/10.1108/BIJ-07-2017-0166

  7. Manzini, R., Accorsi, R.: The new conceptual framework for food supply chain assessment. J. Food Eng. 115(2), 251–263 (2013). https://doi.org/10.1016/j.jfoodeng.2012.10.026

    Article  Google Scholar 

  8. Fredriksson, A., Liljestrand, K.: Capturing food logistics: a literature review and research agenda. Int. J. Log. Res. Appl. 18(1), 16–34 (2015). https://doi.org/10.1080/13675567.2014.944887

    Article  Google Scholar 

  9. Fernando, M., Thibbotuwawa, A., Perera, H.N., Ratnayake, R.M.C.: Close-open mixed vehicle routing optimization model with multiple collecting centers to collect farmers’ perishable produce. In: 2022 International Conference for Advancement in Technology (ICONAT), pp. 1–8 (2022). https://doi.org/10.1109/ICONAT53423.2022.9725977

  10. Gardas, B.B., Raut, R.D., Narkhede, B.: Modeling causal factors of post-harvesting losses in vegetable and fruit supply chain: an Indian perspective. Renew. Sustain. Energy Rev. 80, 1355–1371 (2017). https://doi.org/10.1016/j.rser.2017.05.259

    Article  Google Scholar 

  11. Jayalath, M.M., Perera, H.N.: Mapping post-harvest waste in perishable supply chains through system dynamics: a Sri Lankan case study. The J. Agric. Sci. – Sri Lanka 16(3), 144–161 (2021). https://doi.org/10.4038/jas.v16i03.9476

    Article  Google Scholar 

  12. Porat, R., Lichter, A., Terry, L.A., Harker, R., Buzby, J.: Postharvest losses of fruit and vegetables during retail and in consumers’ homes: quantifications, causes, and means of prevention. Postharvest Biol. Technol. 139, 135–149 (2018). https://doi.org/10.1016/j.postharvbio.2017.11.019

    Article  Google Scholar 

  13. Balaji, M., Arshinder, K.: Modeling the causes of food wastage in Indian perishable food supply chain. Resour. Conserv. Recycl. 114, 153–167 (2016). https://doi.org/10.1016/j.resconrec.2016.07.016

    Article  Google Scholar 

  14. Magalhães, V.S.M., Ferreira, L.M.D.F., Silva, C.: Using a methodological approach to model causes of food loss and waste in fruit and vegetable supply chains. J. Clean. Prod. 283, 124574 (2021). https://doi.org/10.1016/j.jclepro.2020.124574

    Article  Google Scholar 

  15. Ciccullo, F., Cagliano, R., Bartezzaghi, G., Perego, A.: Implementing the circular economy paradigm in the agri-food supply chain: The role of food waste prevention technologies. Res. Conserv. Recycl. 164, 105114 (2021). https://doi.org/10.1016/j.resconrec.2020.105114

    Article  Google Scholar 

  16. Vilariño, M.V., Franco, C., Quarrington, C.: Food loss and waste reduction as an integral part of a circular economy. Front. Environ. Sci. 5, 21 (2017). https://doi.org/10.3389/fenvs.2017.00021

    Article  Google Scholar 

  17. Pannila, N., Jayalath, M.M., Thibbotuwawa, A., Nielsen, I., Uthpala, T.G.G.: Challenges in applying circular economy concepts to food supply chains. Sustainability 14(24), 16536 (2022). https://doi.org/10.3390/su142416536

    Article  Google Scholar 

  18. Cristóbal, J., Castellani, V., Manfredi, S., Sala, S.: Prioritizing and optimizing sustainable measures for food waste prevention and management. Waste Manage. 72, 3–16 (2018). https://doi.org/10.1016/j.wasman.2017.11.007

    Article  Google Scholar 

  19. Redlingshöfer, B., Barles, S., Weisz, H.: Are waste hierarchies effective in reducing environmental impacts from food waste? A systematic review for OECD countries. Resour. Conserv. Recycl. 156, 104723 (2020). https://doi.org/10.1016/j.resconrec.2020.104723

    Article  Google Scholar 

  20. Rais, M., Sheoran, A.: Scope of supply chain management in fruits and vegetables in India. J. Food Process. Technol. 6(3), 1–7 (2015)

    Google Scholar 

  21. Tong, T., Edward Yu, T.-H., Cho, S.-H., Jensen, K., De La Torre Ugarte, D.: Evaluating the spatial spillover effects of transportation infrastructure on agricultural output across the united states. J. Transp. Geogr. 30, 47–55 (2013). https://doi.org/10.1016/j.jtrangeo.2013.03.001

    Article  Google Scholar 

  22. Li, P.-C., Shih, H.-C., Ma, H.-W.: Assessing the transfer of risk due to transportation of agricultural products. Chemosphere 120, 706–713 (2015). https://doi.org/10.1016/j.chemosphere.2014.10.009

    Article  Google Scholar 

  23. Kumar, D., Kalita, P.: Reducing postharvest losses during storage of grain crops to strengthen food security in developing countries. Foods 6(1), 8 (2017). https://doi.org/10.3390/foods6010008

    Article  Google Scholar 

  24. Food and Agriculture Organization of the United Nation. “The future of food and agriculture- Trends and challenges,” Rome (2017)

    Google Scholar 

  25. Pham, Y., Reardon-Smith, K., Deo, R.C.: Evaluating management strategies for sustainable crop production under changing climate conditions: a system dynamics approach. J. Env. Manag. 292, 112790 (2021). https://doi.org/10.1016/j.jenvman.2021.112790

    Article  Google Scholar 

  26. Garcia-Herrero, I., et al.: On the estimation of potential food waste reduction to support sustainable production and consumption policies. Food Policy 80, 24–38 (2018). https://doi.org/10.1016/j.foodpol.2018.08.007

    Article  Google Scholar 

  27. Kumar, M., Choubey, V.K.: Modeling the causes of post-harvest loss in the Agri-food supply chain to achieve sustainable development goals: an ISM approach. In: Mor, R.S., Panghal, A., Kumar, V. (eds.) Challenges and Opportunities of Circular Economy in Agri-Food Sector: Rethinking Waste, pp. 133–149. Springer Singapore, Singapore (2021). https://doi.org/10.1007/978-981-16-3791-9_8

    Chapter  Google Scholar 

  28. Agnusdei, G.P., Coluccia, B., Pacifico, A.M., Miglietta, P.P.: Towards circular economy in the agrifood sector: water footprint assessment of food loss in the Italian fruit and vegetable supply chains. Ecol. Indic. 137, 108781 (2022). https://doi.org/10.1016/j.ecolind.2022.108781

    Article  Google Scholar 

  29. Jouzdani, J., Govindan, K.: On the sustainable perishable food supply chain network design: a dairy products case to achieve sustainable development goals. J. Clean. Prod. 278, 123060 (2021). https://doi.org/10.1016/j.jclepro.2020.123060

    Article  Google Scholar 

  30. Teigiserova, D.A., Hamelin, L., Thomsen, M.: Towards transparent valorization of food surplus, waste and loss: Clarifying definitions, food waste hierarchy, and role in the circular economy. Sci. Total Environ. 706, 136033 (2020). https://doi.org/10.1016/j.scitotenv.2019.136033

    Article  Google Scholar 

  31. Gomes, P.R., Carstens, L., Vilas-Boas, M.C., Kauling, M.F., Cruz, S.T., Dziedzic, M.: Assessing circular economy in Brazilian industries through the analytical hierarchy process. Revista Brasileira de Ciências Ambientais 57(2), 194–205 (2022). https://doi.org/10.5327/z2176-94781277

    Article  Google Scholar 

  32. Ardra, S., Barua, M.K.: Inclusion of circular economy practices in the food supply chain: challenges and possibilities for reducing food wastage in emerging economies like India. Environ. Dev. Sustain. (2022). https://doi.org/10.1007/s10668-022-02630-x

    Article  Google Scholar 

  33. Diprose, G., Lee, L., Blumhardt, H., Walton, S., Greenaway, A.: Reducing single use packaging and moving up the waste hierarchy. Kōtuitui: New Zealand J. Soc. Sci. Online 18(3), 268–289 (2022). https://doi.org/10.1080/1177083X.2022.2154230

    Article  Google Scholar 

  34. Papargyropoulou, E., Lozano, R., Steinberger, J.K., Wright, N., Bin Ujang, Z.: The food waste hierarchy as a framework for the management of food surplus and food waste. J. Clean. Prod. 76, 106–115 (2014). https://doi.org/10.1016/j.jclepro.2014.04.020

    Article  Google Scholar 

  35. Hasson, F., Keeney, S., McKenna, H.: Research guidelines for the Delphi survey technique. J. Adv. Nurs. 32(4), 1008–1015 (2000)

    Google Scholar 

  36. Aruchunarasa, B., Fernando, W.M., Perera, H.N., Thibbotuwawa, A., Ratnayake, R.M.C.: Barriers to additive manufacturing implementation in plastic waste management – a case study from a developing economy. In: 2022 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), pp. 1438–1442 (2022). https://doi.org/10.1109/IEEM55944.2022.9989644

  37. Warfield, J.N.: Developing interconnection matrices in structural modeling. IEEE Trans. Syst., Man, Cybern. SMC-4(1), 81–87 (1974). https://doi.org/10.1109/TSMC.1974.5408524

    Article  MathSciNet  Google Scholar 

  38. Kumar, S., Raut, R.D., Nayal, K., Kraus, S., Yadav, V.S., Narkhede, B.E.: To identify industry 4.0 and circular economy adoption barriers in the agriculture supply chain by using ISM-ANP. J. Clean. Prod. 293, 126023 (2021). https://doi.org/10.1016/j.jclepro.2021.126023

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to acknowledge the financial support given by the Norwegian Program for Capacity Development in Higher Education and Research for Development (NORHED II – Project number 68085), the “Politics and Economic Governance” sub-theme, the project “Enhancing Lean Practices in Supply Chains: Digitalization”, which is a collaboration between the University of Stavanger (Norway), ITB (Indonesia), and the University of Moratuwa (Sri Lanka).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Chandima Ratnayake .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jayalath, M.M., Ratnayake, R.M.C., Perera, H.N., Thibbotuwawa, A. (2023). Adopting Circular Economy Paradigm to Waste Prevention: Investigating Waste Drivers in Vegetable Supply Chains. In: Alfnes, E., Romsdal, A., Strandhagen, J.O., von Cieminski, G., Romero, D. (eds) Advances in Production Management Systems. Production Management Systems for Responsible Manufacturing, Service, and Logistics Futures. APMS 2023. IFIP Advances in Information and Communication Technology, vol 692. Springer, Cham. https://doi.org/10.1007/978-3-031-43688-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43688-8_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43687-1

  • Online ISBN: 978-3-031-43688-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics