Abstract
This study presents the development of a predictive model for the health monitoring of power transmitters in a packaging robot using machine learning techniques. The model is based on a Discrete Bayesian Filter (DBF) and is compared to a model based on a Naïve Bayes Filter (NBF). Data preprocessing techniques are applied to select suitable descriptors for the predictive model. The results show that the DBF model outperforms the NBF model in terms of predictive power. The model can be used to estimate the current state of the power transmitter and predict its degradation over time. This can lead to improved maintenance planning and cost savings in the context of Industry 4.0.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Chakroun, A., Hani, Y., Elmhamedi, A., Masmoudi, F.: A proposed integrated manufacturing system of a workshop producing brass accessories in the context of industry 4.0. Int. J. Adv. Manuf. Technol. 127, 2017–2033 (2022). https://doi.org/10.1007/s00170-022-10057-x
Chakroun, A., Hani, Y., Masmoudi. F., El Mhamedi, A.: Digital transformation process of a mechanical parts production workshop to fulfil the requirements of Industry 4.0. In: LOGISTIQUA 2022 IEEE: 14th International conference of Logistics and Supply Chain Management LOGISTIQUA 2022 – 25–27 May 2022, ELJADIDA, Morocco, p. 6 (2022). https://doi.org/10.1109/LOGISTIQUA55056.2022.9938099
Gimélec. Industry 4.0: The levers of transformation, p. 84 (2014). http://www.gimelec.fr/
Parida, A., Chattopadhyay, G.: Development of a multi-criteria hierarchical framework for maintenance performance measurement (MPM). J. Qual. Maintenance Eng. 13(3), 241–258 (2007). https://doi.org/10.1108/13552510710780276
Parida, A., Kumar, U.: Maintenance performance measurement (MPM): issues and challenges. J. Qual. Maintenance Eng. 12(3), 239–251 (2006). https://doi.org/10.1108/13552510610685084
Kans, M., Inglwad, A.: Common database for cost-effective improvement of maintenance performance. Int. J. Prod. Econ. 113(2), 734–747. (2008). https://doi.org/10.1016/j.ijpe.2007.10.008
Sari, E., Shaharoun, A.M., Ma’aram, A., Yazid, A.M.: Sustainable maintenance performance measures: a pilot survey in Malaysian automotive companies. Procedia CIRP 26, 443–448 (2015). https://doi.org/10.1016/j.procir.2014.07.163
Maletič, D., Maletič, M., Al-Najjar, B., Gomišček, B.: The role of maintenance in improving company’s competitiveness and profitability: a case study in a textile company. J. Manuf. Technol. Manag. 25(4), 441–456 (2014). https://doi.org/10.1108/JMTM-04-2013-0033
Rault, R., Trentesaux, D.: Artificial intelligence, autonomous systems and robotics: legal innovations. In: Borangiu, T., Trentesaux, D., Thomas, A., Cardin, O. (eds.) Service Orientation in Holonic and Multi-Agent Manufacturing, pp. 1–9. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73751-5_1
Leukel, J., González, J., Riekert, M.: Adoption of machine learning technology for failure prediction in industrial maintenance: a systematic review. J. Manuf. Syst. 61, 87–96 (2021)
Shcherbakov, M.V., Glotov, A.V., Cheremisinov, S.V.: Proactive and predictive maintenance of cyber-physical systems. In: Kravets, A., Bolshakov, A., Shcherbakov, M. (eds.) Cyber-Physical Systems: Advances in Design & Modelling, vol. 259, pp. 263–278. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-32579-4_21
Chaudhuri, A.: Predictive maintenance for industrial IoT of vehicle fleets using hierarchical modified fuzzy support vector machine. ArXiv preprint arXiv. 1806.09612 (2018). https://doi.org/10.48550/arXiv.1806.09612
Garcia, M.C., Sanz-Bobi, M.A., Del Pico, J.: SIMAP: intelligent system for predictive maintenance: application to the health condition monitoring of a wind turbine gearbox. Comput. Ind. 57(6), 552–568 (2006). https://doi.org/10.1016/j.com-pind.2006.02.011
Yang, S.K.: An experiment of state estimation for predictive maintenance using Kalman filter on a DC motor. Reliab. Eng. Syst. Saf. 75(1), 103–111 (2002). https://doi.org/10.1016/S0951-8320(01)00107-7
Xia, T., Ding, Y., Dong, Y., et al.: Collaborative production and predictive maintenance scheduling for flexible flow shop with stochastic interruptions and monitoring data. J. Manuf. Syst. 65, 640–652 (2022)
Bencheikh, G., Letouzey, A., Desforges, X.: An approach for joint scheduling of production and predictive maintenance activities. J. Manuf. Syst. 64, 546–560 (2022)
Zonta, T., da Costa, C.A., Zeiser, F.A., et al.: A predictive maintenance model for optimizing production schedule using deep neural networks. J. Manuf. Syst. 62, 450–462 (2022)
Ruiz-Sarmiento, J.R., Monroy, J., Moreno, F.A., Galindo, C., Bonelo, J.M., Gonzalez-Jimenez, J.: A predictive model for the maintenance of industrial machinery in the context of Industry 4.0. Eng. Appl. Artif. Intell. 87, 103289 (2020). https://doi.org/10.1016/j.engappai.2019.103289
Chakroun, A., Hani, Y., Masmoudi, F., El Mhamedi, A.: Modèle prédictif pour l’évaluation de la santé d’une unité d’assemblage basé sur l’apprentissage automatique dans le contexte de l’industrie 4.0. 1 er Congrès de la Société Française d’Automatique, Génie Industriel et de Production SAGIP 2023, 7–9 Juin 2023, Marseille, France (2023)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 IFIP International Federation for Information Processing
About this paper
Cite this paper
Chakroun, A., Hani, Y., Turki, S., Rezg, N., Elmhamedi, A. (2023). Development of Predictive Maintenance Models for a Packaging Robot Based on Machine Learning. In: Alfnes, E., Romsdal, A., Strandhagen, J.O., von Cieminski, G., Romero, D. (eds) Advances in Production Management Systems. Production Management Systems for Responsible Manufacturing, Service, and Logistics Futures. APMS 2023. IFIP Advances in Information and Communication Technology, vol 690. Springer, Cham. https://doi.org/10.1007/978-3-031-43666-6_46
Download citation
DOI: https://doi.org/10.1007/978-3-031-43666-6_46
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43665-9
Online ISBN: 978-3-031-43666-6
eBook Packages: Computer ScienceComputer Science (R0)