Development of Predictive Maintenance Models for a Packaging Robot Based on Machine Learning | SpringerLink
Skip to main content

Abstract

This study presents the development of a predictive model for the health monitoring of power transmitters in a packaging robot using machine learning techniques. The model is based on a Discrete Bayesian Filter (DBF) and is compared to a model based on a Naïve Bayes Filter (NBF). Data preprocessing techniques are applied to select suitable descriptors for the predictive model. The results show that the DBF model outperforms the NBF model in terms of predictive power. The model can be used to estimate the current state of the power transmitter and predict its degradation over time. This can lead to improved maintenance planning and cost savings in the context of Industry 4.0.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 16015
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
JPY 20019
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chakroun, A., Hani, Y., Elmhamedi, A., Masmoudi, F.: A proposed integrated manufacturing system of a workshop producing brass accessories in the context of industry 4.0. Int. J. Adv. Manuf. Technol. 127, 2017–2033 (2022). https://doi.org/10.1007/s00170-022-10057-x

  2. Chakroun, A., Hani, Y., Masmoudi. F., El Mhamedi, A.: Digital transformation process of a mechanical parts production workshop to fulfil the requirements of Industry 4.0. In: LOGISTIQUA 2022 IEEE: 14th International conference of Logistics and Supply Chain Management LOGISTIQUA 2022 – 25–27 May 2022, ELJADIDA, Morocco, p. 6 (2022). https://doi.org/10.1109/LOGISTIQUA55056.2022.9938099

  3. Gimélec. Industry 4.0: The levers of transformation, p. 84 (2014). http://www.gimelec.fr/

  4. Parida, A., Chattopadhyay, G.: Development of a multi-criteria hierarchical framework for maintenance performance measurement (MPM). J. Qual. Maintenance Eng. 13(3), 241–258 (2007). https://doi.org/10.1108/13552510710780276

    Article  Google Scholar 

  5. Parida, A., Kumar, U.: Maintenance performance measurement (MPM): issues and challenges. J. Qual. Maintenance Eng. 12(3), 239–251 (2006). https://doi.org/10.1108/13552510610685084

  6. Kans, M., Inglwad, A.: Common database for cost-effective improvement of maintenance performance. Int. J. Prod. Econ. 113(2), 734–747. (2008). https://doi.org/10.1016/j.ijpe.2007.10.008

  7. Sari, E., Shaharoun, A.M., Ma’aram, A., Yazid, A.M.: Sustainable maintenance performance measures: a pilot survey in Malaysian automotive companies. Procedia CIRP 26, 443–448 (2015). https://doi.org/10.1016/j.procir.2014.07.163

  8. Maletič, D., Maletič, M., Al-Najjar, B., Gomišček, B.: The role of maintenance in improving company’s competitiveness and profitability: a case study in a textile company. J. Manuf. Technol. Manag. 25(4), 441–456 (2014). https://doi.org/10.1108/JMTM-04-2013-0033

    Article  Google Scholar 

  9. Rault, R., Trentesaux, D.: Artificial intelligence, autonomous systems and robotics: legal innovations. In: Borangiu, T., Trentesaux, D., Thomas, A., Cardin, O. (eds.) Service Orientation in Holonic and Multi-Agent Manufacturing, pp. 1–9. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73751-5_1

  10. Leukel, J., González, J., Riekert, M.: Adoption of machine learning technology for failure prediction in industrial maintenance: a systematic review. J. Manuf. Syst. 61, 87–96 (2021)

    Google Scholar 

  11. Shcherbakov, M.V., Glotov, A.V., Cheremisinov, S.V.: Proactive and predictive maintenance of cyber-physical systems. In: Kravets, A., Bolshakov, A., Shcherbakov, M. (eds.) Cyber-Physical Systems: Advances in Design & Modelling, vol. 259, pp. 263–278. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-32579-4_21

  12. Chaudhuri, A.: Predictive maintenance for industrial IoT of vehicle fleets using hierarchical modified fuzzy support vector machine. ArXiv preprint arXiv. 1806.09612 (2018). https://doi.org/10.48550/arXiv.1806.09612

  13. Garcia, M.C., Sanz-Bobi, M.A., Del Pico, J.: SIMAP: intelligent system for predictive maintenance: application to the health condition monitoring of a wind turbine gearbox. Comput. Ind. 57(6), 552–568 (2006). https://doi.org/10.1016/j.com-pind.2006.02.011

    Article  Google Scholar 

  14. Yang, S.K.: An experiment of state estimation for predictive maintenance using Kalman filter on a DC motor. Reliab. Eng. Syst. Saf. 75(1), 103–111 (2002). https://doi.org/10.1016/S0951-8320(01)00107-7

    Article  Google Scholar 

  15. Xia, T., Ding, Y., Dong, Y., et al.: Collaborative production and predictive maintenance scheduling for flexible flow shop with stochastic interruptions and monitoring data. J. Manuf. Syst. 65, 640–652 (2022)

    Google Scholar 

  16. Bencheikh, G., Letouzey, A., Desforges, X.: An approach for joint scheduling of production and predictive maintenance activities. J. Manuf. Syst. 64, 546–560 (2022)

    Google Scholar 

  17. Zonta, T., da Costa, C.A., Zeiser, F.A., et al.: A predictive maintenance model for optimizing production schedule using deep neural networks. J. Manuf. Syst. 62, 450–462 (2022)

    Article  Google Scholar 

  18. Ruiz-Sarmiento, J.R., Monroy, J., Moreno, F.A., Galindo, C., Bonelo, J.M., Gonzalez-Jimenez, J.: A predictive model for the maintenance of industrial machinery in the context of Industry 4.0. Eng. Appl. Artif. Intell. 87, 103289 (2020). https://doi.org/10.1016/j.engappai.2019.103289

  19. Chakroun, A., Hani, Y., Masmoudi, F., El Mhamedi, A.: Modèle prédictif pour l’évaluation de la santé d’une unité d’assemblage basé sur l’apprentissage automatique dans le contexte de l’industrie 4.0. 1 er Congrès de la Société Française d’Automatique, Génie Industriel et de Production SAGIP 2023, 7–9 Juin 2023, Marseille, France (2023)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayoub Chakroun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chakroun, A., Hani, Y., Turki, S., Rezg, N., Elmhamedi, A. (2023). Development of Predictive Maintenance Models for a Packaging Robot Based on Machine Learning. In: Alfnes, E., Romsdal, A., Strandhagen, J.O., von Cieminski, G., Romero, D. (eds) Advances in Production Management Systems. Production Management Systems for Responsible Manufacturing, Service, and Logistics Futures. APMS 2023. IFIP Advances in Information and Communication Technology, vol 690. Springer, Cham. https://doi.org/10.1007/978-3-031-43666-6_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43666-6_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43665-9

  • Online ISBN: 978-3-031-43666-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics