Abstract
ChatGPT is among the recent most-commonly discussed artificial intelligence systems. While many success stories as well as misuses are exemplified in different fields like, e.g., education, the usefulness in various academic disciplines with very close ties to practical applications still needs to be proven. In this paper we explore the use of this artificial intelligence (AI) tool within the logistics domain. As a lesson learned, one has to be careful. That is, answers cannot always be granted as being correct. Beyond diving into related literature, we explore the use of ChatGPT regarding an as yet underexplored (even without consulting generative AI tools) logistics problem, that is, the stochastic vehicle routing problem with uncertainty in the number of available vehicles.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
See, e.g., https://openai.com/blog/chatgpt; last access 30 April 2023.
- 2.
See, e.g., https://blog.google/technology/ai/bard-google-ai-search-updates/; last access 30 April 2023.
- 3.
https://www.perplexity.ai/; last access 22 June 2023.
- 4.
https://www.bing.com/new?setlang=en &sid=081BEF962AF260422C13FCAE2BCC615F; last access 22 June 2023.
- 5.
All entries have been conducted or reconfirmed on 30 April 2023 using the release from 23 March 2023; see https://help.openai.com/en/articles/6825453-chatgpt-release-notes.
- 6.
The dataset, code, and models are publicly available at https://github.com/Hello-SimpleAI/chatgpt-comparison-detection; last access 30 April 2023.
- 7.
Question: Can you write code to input a problem instance of the traveling salesman problem to CPLEX?
Answer: “Yes, I can provide a code snippet in Python to input a TSP instance to CPLEX. Here is an example code that reads a TSP instance from a file in the TSPLIB format, creates a CPLEX model, and solves it: ... ” (ChatGPT).
- 8.
Examples might be the use of INCOTERMS in logistics; see, e.g., https://iccwbo.org/business-solutions/incoterms-rules/incoterms-2020/; last access 30 April 2023.
References
AI HLEG: Ethics Guidelines for Trustworthy AI. European Commission, Brussels (2019). https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai. High-Level Expert Group on Artificial Intelligence. Accessed 22 June 2023
Bang, Y., et al.: A multitask, multilingual, multimodal evaluation of ChatGPT on reasoning, hallucination, and interactivity (2023). https://doi.org/10.48550/arXiv.2302.04023. Available on Arxiv
Berhan, E., Beshah, B., Kitaw, D., Abraham, A.: Stochastic vehicle routing problem: a literature survey. J. Inf. Knowl. Manag. 13(3), 1450022 (2014). https://doi.org/10.1142/S0219649214500221
Castelli, M., Manzoni, L.: Editorial: generative models in artificial intelligence and their applications. Appl. Sci. 12(9), 4127 (2022). https://doi.org/10.3390/app12094127
Du, H., et al.: Chat with ChatGPT on intelligent vehicles: an IEEE TIV perspective. IEEE Trans. Intell. Veh. 8(3), 2020–2026 (2023). https://doi.org/10.1109/TIV.2023.3253281
Frederico, G.F.: ChatGPT in supply chains: initial evidence of applications and potential research agenda. Logistics 7(2), 26 (2023). https://doi.org/10.3390/logistics7020026
Ge, L., Kliewer, N., Nourmohammadzadeh, A., Voß, S., Xie, L.: Revisiting the richness of integrated vehicle and crew scheduling. Public Transp. (2022). https://doi.org/10.1007/s12469-022-00292-6
Ge, L., Nourmohammadzadeh, A., Voß, S., Xie, L.: Robust optimization for integrated vehicle and crew scheduling based on uncertainty in the main inputs. In: The Fifth Data Science Meets Optimisation Workshop at IJCAI-2022, Vienna (2022). https://sites.google.com/view/ijcai2022dso/. Accessed 30 Apr 2023
Ge, L., Voß, S., Xie, L.: Robustness and disturbances in public transport. Public Transp. 14, 191–261 (2022). https://doi.org/10.1007/s12469-022-00301-8
Gendreau, M., Laporte, G., Séguin, R.: Stochastic vehicle routing. Eur. J. Oper. Res. 88, 3–12 (1996). https://doi.org/10.1016/0377-2217(95)00050-X
Golden, B., Raghavan, S., Wasil, E. (eds.): The Vehicle Routing Problem: Latest Advances and New Challenges. Springer, New York (2008). https://doi.org/10.1007/978-0-387-77778-8
Golden, B., Wang, X., Wasil, E.: The Evolution of the Vehicle Routing Problem. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-18716-2
Guo, B., et al.: How close is ChatGPT to human experts? Comparison corpus, evaluation, and detection (2023). https://doi.org/10.48550/arXiv.2301.07597. Available on Arxiv
Haman, M., Školník, M.: Using ChatGPT to conduct a literature review. Account. Res. 1–3 (2023). https://doi.org/10.1080/08989621.2023.2185514
Heilig, L., Lalla-Ruiz, E., Voß, S.: Digital transformation in maritime ports: analysis and a game theoretic framework. NETNOMICS 18, 227–254 (2017). https://doi.org/10.1007/s11066-017-9122-x
Kasneci, E., et al.: ChatGPT for good? On opportunities and challenges of large language models for education. Learn. Individ. Differ. 103, 102274 (2023). https://doi.org/10.1016/j.lindif.2023.102274
Kim, J., Lee, J.: How does ChatGPT introduce transport problems and solutions in North America? Findings (2023). https://doi.org/10.32866/001c.72634. Entry 72634
Konstantakopoulos, G., Gayialis, S., Kechagias, E.: Vehicle routing problem and related algorithms for logistics distribution: a literature review and classification. Oper. Res. Int. J. 22, 2033–2062 (2022). https://doi.org/10.1007/s12351-020-00600-7
Lin, H.Y.: Large-scale artificial intelligence models. Computer 55(5), 76–80 (2022). https://doi.org/10.1109/MC.2022.3151419
McGee, R.W.: How would American history be different if LBJ had lost the 1948 election? A ChatGPT essay (2023). https://doi.org/10.2139/ssrn.4413418. Available at SSRN
Mesquita, M., Moz, M., Paias, A., Pato, M.: A decomposition approach for the integrated vehicle-crew-roster problem with days-off pattern. Eur. J. Oper. Res. 229, 318–331 (2013). https://doi.org/10.1016/j.ejor.2013.02.055
Minoux, M.: Robust linear programming with right-hand-side uncertainty, duality and applications. In: Floudas, C., Pardalos, P. (eds.) Encyclopedia of Optimization, pp. 3317–3327. Springer, Boston (2008). https://doi.org/10.1007/978-0-387-74759-0_569
Minoux, M.: Two-stage robust LP with ellipsoidal right-hand side uncertainty is NP-hard. Optim. Lett. 6(7), 1463–1475 (2012). https://doi.org/10.1007/s11590-011-0341-z
Möller, P. (ed.): ChatGPT and the Like: Artificial Intelligence in Logistics. DHL (2023). https://dhl-freight-connections.com/en/trends/chatgpt-and-the-like-artificial-intelligence-in-logistics/. Accessed 10 May 2023
Mollick, E.R., Mollick, L.: Using AI to implement effective teaching strategies in classrooms: five strategies, including prompts (2023). https://doi.org/10.2139/ssrn.4391243. Available at SSRN
Neugebauer, J., Heilig, L., Voß, S.: Digital twins in seaports: current and future applications. In: Daduna, J., et al. (eds.) ICCL 2023. LNCS, vol. 14239, pp. 202–218. Springer, Cham (2023)
Nourmohammadzadeh, A., Voß, S.: An effective matheuristic approach for robust bus driver rostering with uncertain daily working hours. In: Daduna, J., et al. (eds.) ICCL 2023. LNCS, vol. 14239, pp. xx–yy. Springer, Cham (2023)
O’Leary, D.E.: An analysis of three chatbots: BlenderBot, ChatGPT and LaMDA. Intell. Syst. Account. Finance Manag. 30(1), 41–54 (2023). https://doi.org/10.1002/isaf.1531
Otero, I., Salgado, J.F., Moscoso, S.: Cognitive reflection, cognitive intelligence, and cognitive abilities: a meta-analysis. Intelligence 90, 101614 (2022). https://doi.org/10.1016/j.intell.2021.101614
Ouorou, A.: Robust models for linear programming with uncertain right hand side. Networks 68(3), 200–211 (2016). https://doi.org/10.1002/net.21693
Oyola, J., Arntzen, H., Woodruff, D.L.: The stochastic vehicle routing problem, a literature review, part II: solution methods. EURO J. Transp. Logist. 6(4), 349–388 (2017). https://doi.org/10.1007/s13676-016-0099-7
Oyola, J., Arntzen, H., Woodruff, D.L.: The stochastic vehicle routing problem, a literature review, part I: models. EURO J. Transp. Logist. 7(3), 193–221 (2018). https://doi.org/10.1007/s13676-016-0100-5
Özaltın, O.Y., Prokopyev, O.A., Schaefer, A.J.: The bilevel knapsack problem with stochastic right-hand sides. Oper. Res. Lett. 38(4), 328–333 (2010). https://doi.org/10.1016/j.orl.2010.04.005
Ramamonjison, R., et al.: NL4Opt competition: formulating optimization problems based on their natural language descriptions (2023). https://doi.org/10.48550/arXiv.2303.08233. Available on Arxiv
Ritzinger, U., Puchinger, J., Hartl, R.F.: A survey on dynamic and stochastic vehicle routing problems. Int. J. Prod. Res. 54, 215–231 (2016). https://doi.org/10.1080/00207543.2015.1043403
Sar, K., Ghadimi, P.: A systematic literature review of the vehicle routing problem in reverse logistics operations. Comput. Ind. Eng. 177, 109011 (2023). https://doi.org/10.1016/j.cie.2023.109011
Savelsbergh, M., Ulmer, M.: Challenges and opportunities in crowdsourced delivery planning and operations. 4OR 20, 1–21 (2022). https://doi.org/10.1007/s10288-021-00500-2
Shi, Q., Yang, W., Yang, Z.M., Zhao, Q.C.: Relief materials vehicles planning in natural disasters. IEEE/CAA J. Automatica Sin. 5(2), 595–601 (2018). https://doi.org/10.1109/JAS.2017.7510850
Soeffker, N., Ulmer, M.W., Mattfeld, D.C.: Stochastic dynamic vehicle routing in the light of prescriptive analytics: a review. Eur. J. Oper. Res. 298, 801–820 (2022). https://doi.org/10.1016/j.ejor.2021.07.014
Solis, T.: Die ChatGPT-Richtlinien der 100 größten deutschen Universitäten (2023). https://www.scribbr.de/ki-tools-nutzen/chatgpt-universitaere-richtlinien/. Accessed 22 June 2023
Stokel-Walker, C., Van Noorden, R.: The promise and peril of generative AI. Nature 614, 214–216 (2023). https://doi.org/10.1038/d41586-023-00340-6
Sun, Y., et al.: ERNIE: enhanced representation through knowledge integration (2019). https://doi.org/10.48550/arXiv.1904.09223. Available on Arxiv
Toth, P., Vigo, D.: Vehicle Routing: Problems, Methods, and Applications, 2nd edn. SIAM, Philadelphia (2014)
Voß, S., Gutenschwager, K.: Informationsmanagement. Springer, Berlin (2001). https://doi.org/10.1007/978-3-642-56878-7
Voß, S.: Bus bunching and bus bridging: what can we learn from generative AI tools like ChatGPT? Sustainability 15(12, article #9625) (2023). https://doi.org/10.3390/su15129625
Wang, D., Lu, C.T., Fu, Y.: Towards automated urban planning: when generative and ChatGPT-like AI meets urban planning (2023). https://doi.org/10.48550/arXiv.2304.03892. Available on Arxiv
Wang, F.Y., Yang, J., Wang, X., Li, J., Han, Q.L.: Chat with ChatGPT on Industry 5.0: learning and decision-making for intelligent industries. IEEE/CAA J. Automatica Sin. 10(4), 831–834 (2023). https://doi.org/10.1109/JAS.2023.123552
Winston, P.H.: Artificial Intelligence. Addison-Wesley, Boston (1992). (1st edn. in 1977)
Xiong, C., Chen, X., He, X., Lin, X., Zhang, L.: Agent-based en-route diversion: dynamic behavioral responses and network performance represented by macroscopic fundamental diagrams. Transp. Res. Part C Emerg. Technol. 64, 148–163 (2016). https://doi.org/10.1016/j.trc.2015.04.008
Yang, Z.: The bearable mediocrity of Baidu’s ChatGPT competitor. MIT Technology Review (2023). https://www.technologyreview.com/2023/03/22/1070154/baidu-ernie-bot-chatgpt-reputation/. Accessed 10 May 2023
Zhang, C., et al.: One small step for generative AI, one giant leap for AGI: a complete survey on ChatGPT in AIGC era (2023). https://doi.org/10.48550/arXiv.2304.06488. Available on Arxiv
Zheng, O., Abdel-Aty, M., Wang, D., Wang, Z., Ding, S.: ChatGPT is on the horizon: could a large language model be all we need for intelligent transportation? (2023). https://doi.org/10.48550/arXiv.2303.05382. Available on Arxiv
Zhu, J.J., Jiang, J., Yang, M., Ren, Z.J.: ChatGPT and environmental research. Environ. Sci. Technol. (2023). https://doi.org/10.1021/acs.est.3c01818
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Voß, S. (2023). Successfully Using ChatGPT in Logistics: Are We There Yet?. In: Daduna, J.R., Liedtke, G., Shi, X., Voß, S. (eds) Computational Logistics. ICCL 2023. Lecture Notes in Computer Science, vol 14239. Springer, Cham. https://doi.org/10.1007/978-3-031-43612-3_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-43612-3_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43611-6
Online ISBN: 978-3-031-43612-3
eBook Packages: Computer ScienceComputer Science (R0)