Virtual Control System for Presentations by Real-Time Hand Gesture Recognition Based on Machine Learning | SpringerLink
Skip to main content

Virtual Control System for Presentations by Real-Time Hand Gesture Recognition Based on Machine Learning

  • Conference paper
  • First Online:
Proceedings of the 9th International Conference on Advanced Intelligent Systems and Informatics 2023 (AISI 2023)

Abstract

Presentations are a powerful tool for presenters who want to persuade their audiences in today's digital age. This paper exploits advances in hand gesture recognition, and proposes a virtual control system for presentations. The proposed system utilizes a webcam or built-in camera to capture hand gestures. Based on hand gestures, presentations can be controlled virtually and change presentation slides in both forward and backward directions. It is also possible by using the proposed system to get a pointer on the slide, write, or draw virtually on the screen through specific hand gestures. The obtained results show that the proposed system has a high accuracy of 96% in recognizing hand gestures and thus controlling presentations remotely without using any external device.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Oudah, M., Al-Naji, A., Chahl, J.: Hand gesture recognition based on computer vision: a review of techniques. J. Imaging 6(8), 73 (2020). https://doi.org/10.3390/jimaging6080073

    Article  Google Scholar 

  2. Jaramillo-Yánez, A., Benalcázar, M.E., Mena-Maldonado, E.: Real-time hand gesture recognition using surface electromyography and machine learning: a systematic literature review. Sensors 20(9), 2467 (2020)

    Article  Google Scholar 

  3. Parvathy, P., Subramaniam, K., Prasanna Venkatesan, G.K.D., Karthikaikumar, P., Varghese, J., Jayasankar, T.: Development of hand gesture recognition system using machine learning. J. Ambient. Intell. Humaniz. Comput. 12, 6793–6800 (2021)

    Article  Google Scholar 

  4. Sahoo, J.P., Jaya Prakash, A., Pławiak, P., Samantray, Sa.: Real-time hand gesture recognition using fine-tuned convolutional neural network. Sensors 22(3), 706 (2022). https://doi.org/10.3390/s22030706

    Article  Google Scholar 

  5. Gadekallu, T.R., et al.: Hand gesture classification using a novel CNN-crow search algorithm. Complex Intell. Syst. 7(4), 1855–1868 (2021)

    Article  Google Scholar 

  6. Mahmoud, N.M., Fouad, H., Soliman, A.M.: Smart healthcare solutions using the internet of medical things for hand gesture recognition system. Complex Intell. Syst. 7(3), 1253–1264 (2021)

    Article  Google Scholar 

  7. Mujahid, A., et al.: Real-time hand gesture recognition based on deep learning YOLOv3 model. Appl. Sci. 11(9), 4164 (2021). https://doi.org/10.3390/app11094164

    Article  Google Scholar 

  8. Breland, D.S., et al.: Deep learning-based sign language digits recognition from thermal images with edge computing system. IEEE Sensors J. 21(9), 10445–10453 (2021)

    Article  Google Scholar 

  9. Liao, S., et al.: Occlusion gesture recognition based on improved SSD. Concurrency Computation: Pract. Experience 33(6), e6063 (2021)

    Article  Google Scholar 

  10. Gao, Q., Liu, J., Zhaojie, J.: Hand gesture recognition using multimodal data fusion and multiscale parallel convolutional neural network for human–robot interaction. Expert. Syst. 38(5), e12490 (2021)

    Article  Google Scholar 

  11. Tan, Y.S., Lim, K.M., Tee, C., Lee, C.P., Low, C.Y.: Convolutional neural network with spatial pyramid pooling for hand gesture recognition. Neural Comput. Applic. 33(10), 5339–5351 (2021)

    Article  Google Scholar 

  12. Camillo Lugaresi, J.T.: MediaPipe: A Framework for Building Perception Pipelines. https://arxiv.org/abs/1906.08172 (2019)

  13. Culjak, I., Abram, D., Pribanic, T., Dzapo, H., Cifrek, M.: A brief introduction to OpenCV. In: 2012 Proceedings of the 35th International Convention MIPRO, pp. 1725–1730. IEEE (2012)

    Google Scholar 

  14. Lv, Z., Poiesi, F., Dong, Q., Lloret, J., Song, H.: Deep learning for intelligent human-computer interaction. Appl. Sci. 12(22), 11457 (2022)

    Article  Google Scholar 

  15. Vuletic, T., Duffy, A., Hay, L., McTeague, C., Campbell, G., Grealy, M.: Systematic literature review of hand gestures used in human computer interaction interfaces. Int. J. Hum Comput Stud. 129, 74–94 (2019)

    Article  Google Scholar 

  16. Shriram, S., Nagaraj, B., Jaya, J., Shankar, S., Ajay, P.: Deep learning-based real-time AI virtual mouse system using computer vision to avoid COVID-19 spread. J. Healthcare Eng. 2021, 1–8 (2021)

    Article  Google Scholar 

  17. Hu, B., Wang, J.: Deep learning based hand gesture recognition and UAV flight controls. Int. J. Autom. Comput. 17(1), 17–29 (2020)

    Article  Google Scholar 

  18. Cruz, P.J., et al.: A Deep Q-Network based hand gesture recognition system for control of robotic platforms. Sci. Rep. 13(1), 7956 (2023)

    Article  Google Scholar 

  19. Bora, J., Dehingia, S., Boruah, A., Chetia, A.A., Gogoi, D.: Real-time assamese sign language recognition using mediapipe and deep learning. Procedia Comput. Sci. 218, 1384–1393 (2023)

    Article  Google Scholar 

  20. Tran, D.S., Ho, N.H., Yang, H.J., Kim, S.H., Lee, G.S.: Real-time virtual mouse system using RGB-D images and fingertip detection. Multimed. Tools Appl. 80, 10473–10490 (2021)

    Article  Google Scholar 

  21. Shibly, K.H., Dey, S.K., Islam, M.A., Showrav, S.I.: Design and development of hand gesture based virtual mouse. In 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT), pp. 1–5. IEEE (2019)

    Google Scholar 

  22. Forcier, J., Bissex, P., Chun, W.J.: Python Web Development with Django. Addison-Wesley Professional (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dalia Ezzat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Osama, N. et al. (2023). Virtual Control System for Presentations by Real-Time Hand Gesture Recognition Based on Machine Learning. In: Hassanien, A., Rizk, R.Y., Pamucar, D., Darwish, A., Chang, KC. (eds) Proceedings of the 9th International Conference on Advanced Intelligent Systems and Informatics 2023. AISI 2023. Lecture Notes on Data Engineering and Communications Technologies, vol 184. Springer, Cham. https://doi.org/10.1007/978-3-031-43247-7_29

Download citation

Publish with us

Policies and ethics