Abstract
The task of creating a neural interface for controlling a robotic system by means of an oculographic interface and bioelectric signals, is considered. The article highlights the results of scientific experimental research aimed at the evaluation of the representativeness of bioelectrical signals obtained by electroencephalography (EEG). The basic hypothesis is formulated and tested with the help of artificial neural network technology. The authors consider an experiment on the formation of steady-state visually evoked potentials in a group of people with the subsequent creation of an applied database. They describe an original approach for extracting representative features from the EEG signal. With the help of deep machine learning technology the representativeness of the data under study is evaluated. The main conclusions are formulated and the hypothesis that each brain lead reproduces unique waves which are characteristic of each brain zone is confirmed. The proposed model of a symmetric multilayer multi-adaptive direct propagation neuron can find its application in solving problems related to the processing of EEG signals. Based on the results of this study, the authors suggest that data on the bioelectrical activity of the brain can be uniquely identified, and thus used as control signals for various robotic devices.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Yang, D., Nguyen, T.H., Chung, W.Y.: A bipolar-channel hybrid brain-computer interface system for home automation control utilizing steady-state visually evoked potential and eye-blink signals. Sensors (Basel) 20(19), 5474 (2020). https://doi.org/10.3390/s20195474.
Lin, J.-S., Yang, W.-C.: Wireless brain-computer interface for electric wheelchairs with EEG and eye-blinking signals. Int. J. Innovative Comput., Inf. Control 8, 6011–6024 (2012)
Rihana, S., Damien, P., Moujaess, T.: EEG-Eye blink detection system for brain computer interface. In: Pons, J.L., Torricelli, D., Pajaro, M. (eds.) Converging Clinical and Engineering Research on Neurorehabilitation, pp. 603–608. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-34546-3_98
Musk, E.: An integrated brain-machine interface platform with thousands of channels. BioRxiv preprint, https://www.biorxiv.org/content/10.1101/703801v4. Last accessed 31 May 2023. https://doi.org/10.1101/703801
Turovsky, Y., Wolf, D., Meshcheryakov, R., Iskhakova, A.: Dynamics of frequency characteristics of visually evoked potentials of electroencephalography during the work with brain-computer interfaces. In: Mahadeva Prasanna, S.R., Alexey Karpov, K., Samudravijaya, S.S., Agrawal, (eds.) Speech and Computer: 24th International Conference, SPECOM 2022, Gurugram, India, November 14–16, 2022, Proceedings, pp. 676–687. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-031-20980-2_57
Tao, T., Yi, X., Xiaorong, G., Shangkai, G.: Chirp-modulated visual evoked potential as a generalization of steady state visual evoked potential. J. Neural Eng. 9(1), 016008 (2011). https://doi.org/10.1088/1741-2560/9/1/016008
Kwak, N.-S., Müller, K.-R., Lee, S.-W.: Toward exoskeleton control based on steady state visual evoked potentials. In: 2014 International Winter Workshop on Brain-Computer Interface (BCI 2014), pp. 1–2. Gangwon, Korea (2014). https://doi.org/10.1109/iww-BCI.2014.6782571
Balnytė, R., Uloziene, I., Rastenytė, D., Vaitkus, A., Malcienė, L., Laučkaitė, K.: Diagnostic value of conventional visual evoked potentials applied to patients with multiple sclerosis. Medicina 47(5), 263–269 (2011)
Markand, Omkar N.: Visual evoked potentials. In: Clinical Evoked Potentials, pp. 83–137. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-36955-2_3
Chaudhary, U., Birbaumer, N., Curado, M.R.: Brain-machine interface (BMI) in paralysis. Ann. Phys. Rehabil. Med. 58(1), 9–13 (2015). https://doi.org/10.1016/j.rehab.2014.11.002
Aminoff, M., Goodin, D.: Visual evoked potentials. J. Clin. Neurophysiol.: Official Publ. Am. Electroencephalographic Soc. 11, 493–499 (1994). https://doi.org/10.1097/00004691-199409000-00004
Taylor, M., McCulloch, D.: Visual evoked potentials in infants and children. J. Clin. Neurophysiol.: Official Publ. American Electroencephalographic Soc. 9, 357–372 (1992). https://doi.org/10.1097/00004691-199207010-00004
Liasis, A.: Visual evoked potentials. Acta Ophthalmol. 94 (2016). https://doi.org/10.1111/j.1755-3768.2016.0215
Carter, J.: Visual evoked potentials. Clinical Neurophysiology, 311–322 (2011). https://doi.org/10.1093/med/9780195385113.003.0022
Kwak, N.-S., Müller, K.-R., Lee, S.-W.: A convolutional neural network for steady state visual evoked potential classification under ambulatory environment. PLoS ONE 12(2), 1–20 (2017). https://doi.org/10.1371/journal.pone.0172578
Wolf, D.A., Turovsky, Y.A., Meshcheryakov, R.V., Iskhakov, A.Y., Iskhakova, A.O.: EEG signal auto encoder, computer software, https://www1.fips.ru/iiss/document.xhtml?faces-redirect=true&id=d4eb144baee4f995556af206cde9da36. Last accessed 31 May 2023. (In Russ.)
Naftali, T., Pereira, F.C., Bialek, W.: The information bottleneck method. In: Proceedings of the 37th Allerton Conference on Communication, Control and Computation, https://www.researchgate.net/publication/2844514_The_Information_Bottleneck_Method. Last accessed 31 May 2023
Nguyen, H., Bottone, S., Kim, K., Chiang, M., Poor, H.V.: Adversarial Neural Networks for Error Correcting Codes (preprint), https://www.researchgate.net/publication/357267696_Adversarial_Neural_Networks_for_Error_Correcting_Codes. Last accessed 31 May 2023
Kose, U., Deperlioglu, O., Alzubi, J., Patrut, B.: Diagnosing parkinson by using deep autoencoder neural network. In: Deep Learning for Medical Decision Support Systems. SCI, vol. 909, pp. 73–93. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-6325-6_5
Mirjalili, V., Raschka, S., Namboodiri, A., Ross, A.: Semi-adversarial networks: convolutional autoencoders for imparting privacy to face images. In: 2018 International Conference on Biometrics (ICB), pp. 82–89. IEEE, Gold Coast, QLD, Australia (2018). https://doi.org/10.1109/ICB2018.2018.00023
Meshcheryakov, R.V., Wolf, D.A., Turovsky, Y.A.: An autocoder of the electrical activity of the human brain. Bulletin of the South Ural State University, Series Mathematics. Mechanics. Physics 15(1), 34–42 (2023). https://doi.org/10.14529/mmph230104. (In Russ.)
Bicego, M., Escolano, F.: On learning random forests for random forest-clustering. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 3451–3458. IEEE, Milan, Italy (2021). https://doi.org/10.1109/ICPR48806.2021.9412014
Olson, M.: Essays on Random Forest Ensembles, https://repository.upenn.edu/ dissertations/AAI10786136/. Last accessed 31 May 2023
Nayyar, A., Mahapatra, B.: Effective classification and handling of incoming data packets in mobile Ad Hoc networks (MANETs) using random forest ensemble technique (RF/ET). In: Sharma, N., Chakrabarti, A., Balas, V.E. (eds.) Data Management, Analytics and Innovation. AISC, vol. 1016, pp. 431–444. Springer, Singapore (2020). https://doi.org/10.1007/978-981-13-9364-8_31
Fahim, A.: K and starting means for k-means algorithm. J. Comput. Sci. 55, 101445 (2021). https://doi.org/10.1016/j.jocs.2021.101445
Acknowledgements
The study was financially supported by the Russian Science Foundation under scientific project No. 23-19-00664.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wolf, D., Turovsky, Y., Iskhakova, A., Meshcheryakov, R. (2023). Evaluation of EEG Data for Zonal Affiliation of Brain Waves by Leads in a Robot Control Task. In: Ronzhin, A., Sadigov, A., Meshcheryakov, R. (eds) Interactive Collaborative Robotics. ICR 2023. Lecture Notes in Computer Science(), vol 14214. Springer, Cham. https://doi.org/10.1007/978-3-031-43111-1_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-43111-1_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43110-4
Online ISBN: 978-3-031-43111-1
eBook Packages: Computer ScienceComputer Science (R0)