Soft Web Intelligence with the J-CO Framework | SpringerLink
Skip to main content

Soft Web Intelligence with the J-CO Framework

  • Conference paper
  • First Online:
Web Information Systems and Technologies (WEBIST 2022)

Abstract

In the last two decades a plethora of approaches have been proposed to perform Web Intelligence to discover useful knowledge over the World-Wide Web. However, variety and vastness of the Web are still making this task a hard challenge.

Nonetheless, the Web is evolving. An example is the advent of the JSON format as the practical standard for exchanging data over the Internet.

In our previous work, we proposed the concept of Soft Web Intelligence: it is a modern interpretation of Web Intelligence based on the current technological panorama, in which JSON data sets can be gathered and stored within JSON document stores and processed by means of Soft Computing so as to Soft Querying them. Soft Web Intelligence is enabled by the J-CO Framework, a software tool that is natively able to manage, soft-query and transform collections of JSON documents, located either in NoSQL repositories or over the Internet. The paper illustrates our vision by presenting a plausible case study based on a weekly-updated data set that reports COVID-19 cases in European Countries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 6634
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 8293
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    ECDC web site: https://www.ecdc.europa.eu/en).

  2. 2.

    GeoNames web site: https://www.geonames.org/.

  3. 3.

    ISO, country code web site: https://www.iso.org/iso-3166-country-codes.html.

  4. 4.

    GeoNames web service to get country codes:

    http://api.geonames.org/countryInfoJSON?formatted=true &username=paolofosci.

References

  1. Abir, B.K., Amel, G.T.: Towards fuzzy querying of NOSQL document-oriented databases. DBKDA 2015, 163 (2015)

    Google Scholar 

  2. Bordogna, G., Capelli, S., Ciriello, D.E., Psaila, G.: A cross-analysis framework for multi-source volunteered, crowdsourced, and authoritative geographic information: the case study of volunteered personal traces analysis against transport network data. Geo-spat. Inf. Sci. 21(3), 257–271 (2018)

    Article  Google Scholar 

  3. Burini, F., Cortesi, N., Gotti, K., Psaila, G.: The urban nexus approach for analyzing mobility in the smart city: towards the identification of city users networking. Mob. Inf. Syst. 2018, 6294872 (2018)

    Google Scholar 

  4. Burini, F., Cortesi, N., Psaila, G.: From data to rhizomes: applying a geographical concept to understand the mobility of tourists from geo-located tweets. In: Informatics, vol. 8(1), p. 1. Multidisciplinary Digital Publishing Institute (2021)

    Google Scholar 

  5. Butler, H., Daly, M., Doyle, A., Gillies, S., Hagen, S., Schaub, T., et al.: The geojson format. Internet Engineering Task Force (IETF) (2016)

    Google Scholar 

  6. Fosci, P., Marrara, S., Psaila, G.: Geosoft: a language for soft querying features within geojson information layers. In: Marchiori, M., Domínguez Mayo, F.J., Filipe, J. (eds.) Web Information Systems and Technologies. WEBIST WEBIST 2020 2021. LNBIP, vol. 469, pp. 196–219. Springer International Publishing, Cham (2023). https://doi.org/10.1007/978-3-031-24197-0_11

  7. Fosci, P., Psaila, G.: J-CO, a framework for fuzzy querying collections of JSON documents (Demo). In: Andreasen, T., De Tré, G., Kacprzyk, J., Legind Larsen, H., Bordogna, G., Zadrożny, S. (eds.) FQAS 2021. LNCS (LNAI), vol. 12871, pp. 142–153. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86967-0_11

    Chapter  Google Scholar 

  8. Fosci, P., Psaila, G.: Towards flexible retrieval, integration and analysis of Json data sets through fuzzy sets: a case study. Information 12(7), 258 (2021)

    Article  Google Scholar 

  9. Fosci, P., Psaila, G.: Intuitionistic fuzzy sets in J-CO-QL +? In: García Bringas, P., (et al). 17th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2022). LNNS, vol. 531, pp. 134–145. Springer, Cham. https://doi.org/10.1007/978-3-031-18050-7_13

  10. Fosci, P., Psaila, G.: Soft integration of geo-tagged data sets IN J-CO-QL+. ISPRS Int. J. Geo Inf. 11(9), 484 (2022)

    Article  Google Scholar 

  11. Fosci, P., Psaila, G., et al.: Towards soft web intelligence by collecting and processing json data sets fromweb sources. In: 18th International Conference on Web Information Systems and Technologies, pp. 302–313. No. 302, SCIPRESS (2022)

    Google Scholar 

  12. Han, J., Chang, K.C.: Data mining for web intelligence. Computer 35(11), 64–70 (2002)

    Article  Google Scholar 

  13. Kacprzyk, J., Zadrożny, S.: Soft computing and web intelligence for supporting consensus reaching. Soft. Comput. 14(8), 833–846 (2010)

    Article  Google Scholar 

  14. Medina, J.M., Blanco, I.J., Pons, O.: A fuzzy database engine for MongoDB. Int. J. Intell. Syst. Online library 37, 5691–5764 (2022)

    Article  Google Scholar 

  15. Mehrab, F., Harounabadi, A.: Apply uncertainty in document-oriented database (MongoDB) using F-xml. J. Adv. Comput. Res. 9(3), 87–101 (2018)

    Google Scholar 

  16. Negash, S., Gray, P.: Business intelligence. In: Negash, S., Gray, P. (eds.) Handbook On Decision Support Systems 2, pp. 175–193. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-48716-6_9

  17. Poli, V.S.R.: Fuzzy data mining and web intelligence. In: International Conference on Fuzzy Theory and Its Applications (iFUZZY), pp. 74–79. IEEE (2015)

    Google Scholar 

  18. Psaila, G., Fosci, P.: Toward an anayist-oriented polystore framework for processing JSON geo-data. In: International Conference on Applied Computing 2018, Budapest; Hungary, 21–23 October 2018, pp. 213–222. IADIS (2018)

    Google Scholar 

  19. Psaila, G., Fosci, P.: J-CO: a platform-independent framework for managing geo-referenced JSON data sets. Electronics 10(5), 621 (2021)

    Article  Google Scholar 

  20. Psaila, G., Marrara, S., Fosci, P.: Soft querying GeoJSON documents within the j-co framework. In: WEBIST, pp. 253–265 (2020)

    Google Scholar 

  21. Reddy, P.V.S.: FUZZYALGOL: fuzzy algorithmic language for designing fuzzy algorithms. J. Comput. Sci. Eng. 2(2), 21–24 (2010)

    Google Scholar 

  22. Yao, Y.Y., Zhong, N., Liu, J., Ohsuga, S.: Web Intelligence (WI) research challenges and trends in the new information age. In: Zhong, N., Yao, Y., Liu, J., Ohsuga, S. (eds.) WI 2001. LNCS (LNAI), vol. 2198, pp. 1–17. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45490-X_1

    Chapter  MATH  Google Scholar 

  23. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  MATH  Google Scholar 

  24. Zadeh, L.A.: A note on web intelligence, world knowledge and fuzzy logic. Data Knowl. Eng. 50(3), 291–304 (2004)

    Article  Google Scholar 

  25. Zadeh, L.A.: Web intelligence, world knowledge and fuzzy logic – the concept of web IQ (WIQ). In: Negoita, M.G., Howlett, R.J., Jain, L.C. (eds.) KES 2004. LNCS (LNAI), vol. 3213, pp. 1–5. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30132-5_1

    Chapter  Google Scholar 

  26. Zhang, Y.Q., Lin, T.Y.: Computational web intelligence (CWI): synergy of computational intelligence and web technology. In: World Congress on Computational Intelligence, vol. 2, pp. 1104–1107. IEEE (2002)

    Google Scholar 

  27. Zhong, N., et al.: Web intelligence meets brain informatics. In: Zhong, N., Liu, J., Yao, Y., Wu, J., Lu, S., Li, K. (eds.) WImBI 2006. LNCS (LNAI), vol. 4845, pp. 1–31. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77028-2_1

    Chapter  Google Scholar 

  28. Zuccala, A., Thelwall, M., Oppenheim, C., Dhiensa, R.: Web intelligence analyses of digital libraries: a case study of the national electronic library for health (NELH). J. Doc. 63, 558–589 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Psaila .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fosci, P., Psaila, G. (2023). Soft Web Intelligence with the J-CO Framework. In: Marchiori, M., Domínguez Mayo, F.J., Filipe, J. (eds) Web Information Systems and Technologies. WEBIST 2022. Lecture Notes in Business Information Processing, vol 494. Springer, Cham. https://doi.org/10.1007/978-3-031-43088-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43088-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43087-9

  • Online ISBN: 978-3-031-43088-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics