Abstract
In the last two decades a plethora of approaches have been proposed to perform Web Intelligence to discover useful knowledge over the World-Wide Web. However, variety and vastness of the Web are still making this task a hard challenge.
Nonetheless, the Web is evolving. An example is the advent of the JSON format as the practical standard for exchanging data over the Internet.
In our previous work, we proposed the concept of Soft Web Intelligence: it is a modern interpretation of Web Intelligence based on the current technological panorama, in which JSON data sets can be gathered and stored within JSON document stores and processed by means of Soft Computing so as to Soft Querying them. Soft Web Intelligence is enabled by the J-CO Framework, a software tool that is natively able to manage, soft-query and transform collections of JSON documents, located either in NoSQL repositories or over the Internet. The paper illustrates our vision by presenting a plausible case study based on a weekly-updated data set that reports COVID-19 cases in European Countries.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
ECDC web site: https://www.ecdc.europa.eu/en).
- 2.
GeoNames web site: https://www.geonames.org/.
- 3.
ISO, country code web site: https://www.iso.org/iso-3166-country-codes.html.
- 4.
GeoNames web service to get country codes:
http://api.geonames.org/countryInfoJSON?formatted=true &username=paolofosci.
References
Abir, B.K., Amel, G.T.: Towards fuzzy querying of NOSQL document-oriented databases. DBKDA 2015, 163 (2015)
Bordogna, G., Capelli, S., Ciriello, D.E., Psaila, G.: A cross-analysis framework for multi-source volunteered, crowdsourced, and authoritative geographic information: the case study of volunteered personal traces analysis against transport network data. Geo-spat. Inf. Sci. 21(3), 257–271 (2018)
Burini, F., Cortesi, N., Gotti, K., Psaila, G.: The urban nexus approach for analyzing mobility in the smart city: towards the identification of city users networking. Mob. Inf. Syst. 2018, 6294872 (2018)
Burini, F., Cortesi, N., Psaila, G.: From data to rhizomes: applying a geographical concept to understand the mobility of tourists from geo-located tweets. In: Informatics, vol. 8(1), p. 1. Multidisciplinary Digital Publishing Institute (2021)
Butler, H., Daly, M., Doyle, A., Gillies, S., Hagen, S., Schaub, T., et al.: The geojson format. Internet Engineering Task Force (IETF) (2016)
Fosci, P., Marrara, S., Psaila, G.: Geosoft: a language for soft querying features within geojson information layers. In: Marchiori, M., Domínguez Mayo, F.J., Filipe, J. (eds.) Web Information Systems and Technologies. WEBIST WEBIST 2020 2021. LNBIP, vol. 469, pp. 196–219. Springer International Publishing, Cham (2023). https://doi.org/10.1007/978-3-031-24197-0_11
Fosci, P., Psaila, G.: J-CO, a framework for fuzzy querying collections of JSON documents (Demo). In: Andreasen, T., De Tré, G., Kacprzyk, J., Legind Larsen, H., Bordogna, G., Zadrożny, S. (eds.) FQAS 2021. LNCS (LNAI), vol. 12871, pp. 142–153. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86967-0_11
Fosci, P., Psaila, G.: Towards flexible retrieval, integration and analysis of Json data sets through fuzzy sets: a case study. Information 12(7), 258 (2021)
Fosci, P., Psaila, G.: Intuitionistic fuzzy sets in J-CO-QL +? In: García Bringas, P., (et al). 17th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2022). LNNS, vol. 531, pp. 134–145. Springer, Cham. https://doi.org/10.1007/978-3-031-18050-7_13
Fosci, P., Psaila, G.: Soft integration of geo-tagged data sets IN J-CO-QL+. ISPRS Int. J. Geo Inf. 11(9), 484 (2022)
Fosci, P., Psaila, G., et al.: Towards soft web intelligence by collecting and processing json data sets fromweb sources. In: 18th International Conference on Web Information Systems and Technologies, pp. 302–313. No. 302, SCIPRESS (2022)
Han, J., Chang, K.C.: Data mining for web intelligence. Computer 35(11), 64–70 (2002)
Kacprzyk, J., Zadrożny, S.: Soft computing and web intelligence for supporting consensus reaching. Soft. Comput. 14(8), 833–846 (2010)
Medina, J.M., Blanco, I.J., Pons, O.: A fuzzy database engine for MongoDB. Int. J. Intell. Syst. Online library 37, 5691–5764 (2022)
Mehrab, F., Harounabadi, A.: Apply uncertainty in document-oriented database (MongoDB) using F-xml. J. Adv. Comput. Res. 9(3), 87–101 (2018)
Negash, S., Gray, P.: Business intelligence. In: Negash, S., Gray, P. (eds.) Handbook On Decision Support Systems 2, pp. 175–193. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-48716-6_9
Poli, V.S.R.: Fuzzy data mining and web intelligence. In: International Conference on Fuzzy Theory and Its Applications (iFUZZY), pp. 74–79. IEEE (2015)
Psaila, G., Fosci, P.: Toward an anayist-oriented polystore framework for processing JSON geo-data. In: International Conference on Applied Computing 2018, Budapest; Hungary, 21–23 October 2018, pp. 213–222. IADIS (2018)
Psaila, G., Fosci, P.: J-CO: a platform-independent framework for managing geo-referenced JSON data sets. Electronics 10(5), 621 (2021)
Psaila, G., Marrara, S., Fosci, P.: Soft querying GeoJSON documents within the j-co framework. In: WEBIST, pp. 253–265 (2020)
Reddy, P.V.S.: FUZZYALGOL: fuzzy algorithmic language for designing fuzzy algorithms. J. Comput. Sci. Eng. 2(2), 21–24 (2010)
Yao, Y.Y., Zhong, N., Liu, J., Ohsuga, S.: Web Intelligence (WI) research challenges and trends in the new information age. In: Zhong, N., Yao, Y., Liu, J., Ohsuga, S. (eds.) WI 2001. LNCS (LNAI), vol. 2198, pp. 1–17. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45490-X_1
Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)
Zadeh, L.A.: A note on web intelligence, world knowledge and fuzzy logic. Data Knowl. Eng. 50(3), 291–304 (2004)
Zadeh, L.A.: Web intelligence, world knowledge and fuzzy logic – the concept of web IQ (WIQ). In: Negoita, M.G., Howlett, R.J., Jain, L.C. (eds.) KES 2004. LNCS (LNAI), vol. 3213, pp. 1–5. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30132-5_1
Zhang, Y.Q., Lin, T.Y.: Computational web intelligence (CWI): synergy of computational intelligence and web technology. In: World Congress on Computational Intelligence, vol. 2, pp. 1104–1107. IEEE (2002)
Zhong, N., et al.: Web intelligence meets brain informatics. In: Zhong, N., Liu, J., Yao, Y., Wu, J., Lu, S., Li, K. (eds.) WImBI 2006. LNCS (LNAI), vol. 4845, pp. 1–31. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77028-2_1
Zuccala, A., Thelwall, M., Oppenheim, C., Dhiensa, R.: Web intelligence analyses of digital libraries: a case study of the national electronic library for health (NELH). J. Doc. 63, 558–589 (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Fosci, P., Psaila, G. (2023). Soft Web Intelligence with the J-CO Framework. In: Marchiori, M., Domínguez Mayo, F.J., Filipe, J. (eds) Web Information Systems and Technologies. WEBIST 2022. Lecture Notes in Business Information Processing, vol 494. Springer, Cham. https://doi.org/10.1007/978-3-031-43088-6_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-43088-6_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43087-9
Online ISBN: 978-3-031-43088-6
eBook Packages: Computer ScienceComputer Science (R0)