Comparison of ANN and SVR for State of Charge Regression Evaluating EIS Spectra | SpringerLink
Skip to main content

Comparison of ANN and SVR for State of Charge Regression Evaluating EIS Spectra

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2023)

Abstract

The demand for energy storage is increasing massively due to the electrification of transport and the expansion of renewable energies. Current battery technologies cannot satisfy this growing demand because they are difficult to recycle, because the necessary raw materials are mined under precarious conditions, and because the energy density is insufficient. Metal-air batteries offer a high energy density because there is only one active mass inside the cell and the cathodic reaction uses the ambient air. Various metals can be used, but zinc is very promising because of its disposability, non-toxic behavior, and because operation as a secondary cell is possible. Typical characteristics of zinc-air batteries are flat charge and discharge curves. On the one hand, this is an advantage for the subsequent power electronics, which can be optimized for smaller and constant voltage ranges. On the other hand, the state determination of the system becomes more complex, since the voltage level is not sufficient to determine the state of the battery. In this context, electrochemical impedance spectroscopy is a promising candidate since the resulting impedance spectra depend on the state of charge, working point, state of aging, and temperature. Therefore, in this publication, electrochemical impedance spectroscopy is combined with multiple machine learning techniques to also determine successfully the state of charge during charging of the cell at non-fixed charging currents.

Funded by organization EFRE-0801585.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10295
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12869
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. ADAC: Zufahrtsbeschränkungen in Europa (2021). https://www.adac.de/verkehr/abgas-diesel-fahrverbote/fahrverbote/fahrv/

  2. Barsoukov, E., Macdonald, J.R. (eds.): Impedance spectroscopy: theory, experiment, and applications. Wiley, Hoboken, NJ, third edition edn. (2018)

    Google Scholar 

  3. Boukamp, B.A.: Impedance Spectroscopy, Strength and Limitations (Impedanzspektroskopie, Stärken und Grenzen). tm - Technisches Messen 71, 454–459 (2004). https://doi.org/10.1524/teme.71.9.454.42758

  4. Bundesministerium fuer Wirtschaft and Bundesministerium fuer Bildung und Forschung: Plattform Industrie 4.0 - Was ist Industrie 4.0 (2021). https://www.plattform-i40.de/IP/Navigation/DE/Industrie40/WasIndustrie40/was-ist-industrie-40.html

  5. Chakkaravarthy, C., Waheed, A., Udupa, H.: Zinc-air alkaline batteries - a review. J. Power Sources 6(3), 203–228 (1981)

    Google Scholar 

  6. Dufo-López, R., Cortés-Arcos, T., Artal-Sevil, J.S., Bernal-Agustn, J.L.: Comparison of lead-acid and li-ion batteries lifetime prediction models in stand-alone photovoltaic systems. Appl. Sci. 11(3), 1099 (2021). https://doi.org/10.3390/app11031099. https://www.mdpi.com/2076-3417/11/3/1099

  7. of Energy, U.D.: Energy storage database (2021). https://www.sandia.gov/ess-ssl/global-energy-storage-database/

  8. Huang, J.: Diffusion impedance of electroactive materials, electrolytic solutions and porous electrodes: Warburg impedance and beyond. Electrochimica Acta 281, 170–188 (2018)

    Google Scholar 

  9. Loechte, A., Gebert, O., Gloesekoetter, P.: End of charge detection of batteries with high production tolerances, p. 6. Granada (2019)

    Google Scholar 

  10. Loechte, A., Gebert, O., Gloesekoetter, P.: End of charge detection by processing impedance spectra of batteries. In: Valenzuela, O., Rojas, F., Herrera, L.J., Pomares, H., Rojas, I. (eds.) ITISE 2019. CS, pp. 163–176. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56219-9_11

    Chapter  Google Scholar 

  11. Mainar, A.R., et al.: An overview of progress in electrolytes for secondary zinc-air batteries and other storage systems based on Zinc. J. Energy Storage 15, 304–328 (2018)

    Google Scholar 

  12. Melzer, A.: Materialien für Zink und Zink-Luft Batterien (2010). https://docplayer.org/5093744-Materialien-fuer-zink-und-zink-luft-batterien.html

  13. Sun, W., et al.: A rechargeable zinc-air battery based on zinc peroxide chemistry. Science 371(6524), 46–51 (2021). https://doi.org/10.1126/science.abb9554

    Article  CAS  PubMed  Google Scholar 

  14. für Sonnenenergie-und Wasserstoff-Forschung Baden-Württemberg (ZSW): Bestand an Elektro-Pkw weltweit (2021). https://www.zsw-bw.de/mediathek/datenservice.html

Download references

Acknowledgement

Funded by EFRE-0801585.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre Loechte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Loechte, A., Thranow, JO., Winters, F., Heller, A., Gloesekoetter, P. (2023). Comparison of ANN and SVR for State of Charge Regression Evaluating EIS Spectra. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2023. Lecture Notes in Computer Science, vol 14135. Springer, Cham. https://doi.org/10.1007/978-3-031-43078-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43078-7_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43077-0

  • Online ISBN: 978-3-031-43078-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics