Graph Diffusion Reconstruction Network for Addictive Brain-Networks Identification | SpringerLink
Skip to main content

Graph Diffusion Reconstruction Network for Addictive Brain-Networks Identification

  • Conference paper
  • First Online:
Brain Informatics (BI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13974))

Included in the following conference series:

Abstract

Functional Magnetic Resonance Imaging(fMRI) can reveal complex patterns of brain functional changes. The exploration of addiction-related brain connectivity can be more precise with fMRI data. However, it is still difficult to obtain addiction-related brain connectivity effectively from fMRI data due to the complexity and non-linear characteristics of brain connections. Therefore, this paper proposed a Graph Diffusion Reconstruction Network (GDRN), which could capture addiction-related brain connectivity from fMRI data of addicted rats. The diffusion reconstruction module effectively maintained the unity of data distribution by reconstructing the training samples. This module enhanced the ability to reconstruct nicotine addiction-related brain networks. Experiments on the nicotine addiction rat dataset show that the proposed model can effectively explore nicotine addiction-related brain connectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9151
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11439
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hartmann-Boyce, J., Chepkin, S.C., Ye, W., et al.: Nicotine replacement therapy versus control for smoking cessation. Cochrane Database Syst. Rev. (5) (2018)

    Google Scholar 

  2. Beaglehole, R., Bates, C., Youdan, B., et al.: Nicotine without smoke: fighting the tobacco epidemic with harm reduction. Lancet 394(10200), 718–720 (2019)

    Article  Google Scholar 

  3. Quach, B.C., Bray, M.J., Gaddis, N.C., et al.: Expanding the genetic architecture of nicotine dependence and its shared genetics with multiple traits. Nat. Commun. 11(1), 5562 (2020)

    Article  Google Scholar 

  4. Heeger, D.J., Ress, D.: What does fMRI tell us about neuronal activity? Nat. Rev. Neurosci. 3(2), 142–151 (2002)

    Article  Google Scholar 

  5. Allen, E.A., Damaraju, E., Plis, S.M., et al.: Tracking whole-brain connectivity dynamics in the resting state. Cereb. Cortex 24(3), 663–676 (2014)

    Article  Google Scholar 

  6. Hu, S., Lei, B., Wang, S., et al.: Bidirectional mapping generative adversarial networks for brain MR to PET synthesis. IEEE Trans. Med. Imaging 41(1), 145–157 (2021)

    Article  Google Scholar 

  7. Wang, S., Shen, Y., Zeng, D., et al.: Bone age assessment using convolutional neural networks. In: 2018 International Conference on Artificial Intelligence and Big Data (ICAIBD), pp. 175–178. IEEE (2018)

    Google Scholar 

  8. Wang, S.Q., Li, X., Cui, J.L., et al.: Prediction of myelopathic level in cervical spondylotic myelopathy using diffusion tensor imaging. J. Magn. Reson. Imaging 41(6), 1682–1688 (2015)

    Article  Google Scholar 

  9. Hu, S., Yuan, J., Wang, S.: Cross-modality synthesis from MRI to PET using adversarial U-net with different normalization. In: 2019 International Conference on Medical Imaging Physics and Engineering (ICMIPE), pp. 1–5. IEEE (2019)

    Google Scholar 

  10. Shen, Y., Huang, X., Kwak, K.S., et al.: Subcarrier-pairing-based resource optimization for OFDM wireless powered relay transmissions with time switching scheme. IEEE Trans. Signal Process. 65(5), 1130–1145 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lei, B., Liang, E., Yang, M., et al.: Predicting clinical scores for Alzheimer’s disease based on joint and deep learning. Exp. Syst. Appl. 187, 115966 (2022)

    Article  Google Scholar 

  12. Hu, S., Yu, W., Chen, Z., et al.: Medical image reconstruction using generative adversarial network for Alzheimer disease assessment with class-imbalance problem. In: 2020 IEEE 6th International Conference on Computer and Communications (ICCC), pp. 1323–1327. IEEE (2020)

    Google Scholar 

  13. Wang, S., Hu, Y., Shen, Y., et al.: Classification of diffusion tensor metrics for the diagnosis of a myelopathic cord using machine learning. Int. J. Neural Syst. 28(02), 1750036 (2018)

    Article  Google Scholar 

  14. Wang, S., Shen, Y., Chen, W., Xiao, T., Hu, J.: Automatic recognition of mild cognitive impairment from MRI images using expedited convolutional neural networks. In: Lintas, A., Rovetta, S., Verschure, P.F.M.J., Villa, A.E.P. (eds.) ICANN 2017. LNCS, vol. 10613, pp. 373–380. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68600-4_43

    Chapter  Google Scholar 

  15. Zeng, D., Wang, S., Shen, Y., et al.: A GA-based feature selection and parameter optimization for support tucker machine. Procedia Comput. Sci. 111, 17–23 (2017)

    Article  Google Scholar 

  16. Wang, S., Wang, H., Shen, Y., et al.: Automatic recognition of mild cognitive impairment and Alzheimer’s disease using ensemble based 3d densely connected convolutional networks. In: 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 517–523. IEEE (2018)

    Google Scholar 

  17. Mo, L.F., Wang, S.Q.: A variational approach to nonlinear two-point boundary value problems. Nonlinear Anal. Theory Methods Appl. 71(12), e834–e838 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wang, S., Wang, X., Shen, Y., et al.: An ensemble-based densely-connected deep learning system for assessment of skeletal maturity. IEEE Trans. Syst. Man Cybern.: Syst. 52(1), 426–437 (2020)

    Article  Google Scholar 

  19. Yu, W., Lei, B., Wang, S., et al.: Morphological feature visualization of Alzheimer’s disease via multidirectional perception GAN. IEEE Trans. Neural Netw. Learn. Syst. (2022). https://doi.org/10.1109/TNNLS.2021.3118369

    Article  Google Scholar 

  20. Lei, B., Yu, S., Zhao, X., et al.: Diagnosis of early Alzheimer’s disease based on dynamic high order networks. Brain Imaging Behav. 15, 276–287 (2021)

    Article  Google Scholar 

  21. Yu, S., et al.: Multi-scale enhanced graph convolutional network for early mild cognitive impairment detection. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 228–237. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_23

    Chapter  Google Scholar 

  22. Hu, S., Shen, Y., Wang, S., Lei, B.: Brain MR to PET synthesis via bidirectional generative adversarial network. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 698–707. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_67

    Chapter  Google Scholar 

  23. Goodfellow, I., Pouget-Abadie, J., Mirza, M., et al.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020)

    Article  MathSciNet  Google Scholar 

  24. Pan, S., Hu, R., Long, G., et al.: Adversarially regularized graph autoencoder for graph embedding. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence, pp. 2609–2615 (2018)

    Google Scholar 

  25. You, S., Lei, B., Wang, S., et al.: Fine perceptive GANs for brain MR image super-resolution in wavelet domain. IEEE Trans. Neural Netw. Learn. Syst. (2022). https://doi.org/10.1109/TNNLS.2022.3153088

    Article  Google Scholar 

  26. Yu, W., Lei, B., Ng, M.K., et al.: Tensorizing GAN with high-order pooling for Alzheimer’s disease assessment. IEEE Trans. Neural Netw. Learn. Syst. 33(9), 4945–4959 (2021)

    Article  Google Scholar 

  27. Conte, G.M., Weston, A.D., Vogelsang, D.C., et al.: Generative adversarial networks to synthesize missing t1 and flair MRI sequences for use in a multisequence brain tumor segmentation model. Radiology 299(2), 313–323 (2021)

    Article  Google Scholar 

  28. Pan, Y., Liu, M., Xia, Y., et al.: Disease-image-specific learning for diagnosis-oriented neuroimage synthesis with incomplete multi-modality data. IEEE Trans. Pattern Anal. Mach. Intell. 44(10), 6839–6853 (2021)

    Article  Google Scholar 

  29. Zhou, B., et al.: Synthesizing multi-tracer PET images for Alzheimer’s disease patients using a 3d unified anatomy-aware cyclic adversarial network. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12906, pp. 34–43. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87231-1_4

    Chapter  Google Scholar 

  30. Jiao, J., Namburete, A.I., Papageorghiou, A.T., et al.: Self-supervised ultrasound to MRI fetal brain image synthesis. IEEE Trans. Med. Imaging 39(12), 4413–4424 (2020)

    Article  Google Scholar 

  31. Wolleb, J., Bieder, F., Sandkuhler, R.: Diffusion models for medical anomaly detection. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. Lecture Notes in Computer Science, vol. 13438, pp. 35–45. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16452-1_4

    Chapter  Google Scholar 

  32. Pinaya, W.H., Graham, M.S., Gray, R.: Fast unsupervised brain anomaly detection and segmentation with diffusion models. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. Lecture Notes in Computer Science, vol. 13438, pp. 705–714. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16452-1_67

    Chapter  Google Scholar 

  33. Khader, F., Mueller-Franzes, G., Arasteh, S.T., et al.: Medical diffusion - denoising diffusion probabilistic models for 3d medical image generation. arXiv preprint arXiv: Arxiv-2211.03364 (2022)

  34. Chung, H., Ye, J.C.: Score-based diffusion models for accelerated MRI. Med. Image Anal. 80, 102479 (2022)

    Article  Google Scholar 

  35. Mizutani, H., Yamamura, H., Muramatsu, M., et al.: Spontaneous and nicotine-induced Ca2+ oscillations mediated by Ca2+ influx in rat pinealocytes. Am. J. Physiol.-Cell Physiol. 306(11), C1008–C1016 (2014)

    Article  Google Scholar 

  36. Keeley, R.J., Hsu, L.M., Brynildsen, J.K., et al.: Intrinsic differences in insular circuits moderate the negative association between nicotine dependence and cingulate-striatal connectivity strength. Neuropsychopharmacology 45(6), 1042–1049 (2020)

    Article  Google Scholar 

  37. Claus, E.D., Blaine, S.K., Filbey, F.M., et al.: Association between nicotine dependence severity, BOLD response to smoking cues, and functional connectivity. Neuropsychopharmacology 38(12), 2363–2372 (2013)

    Article  Google Scholar 

  38. Giessing, C., Thiel, C.M., Rosler, F., et al.: The modulatory effects of nicotine on parietal cortex activity in a cued target detection task depend on cue reliability. Neuroscience 137(3), 853–864 (2006)

    Article  Google Scholar 

  39. Perry, E.K., Morris, C.M., Court, J.A., et al.: Alteration in nicotine binding sites in Parkinson’s disease, Lewy body dementia and Alzheimer’s disease: possible index of early neuropathology. Neuroscience 64(2), 385–395 (1995)

    Article  Google Scholar 

  40. Pushparaj, A., Kim, A.S., Musiol, M., et al.: Involvement of the rostral agranular insular cortex in nicotine self-administration in rats. Behav. Brain Res. 290, 77–83 (2015)

    Article  Google Scholar 

  41. Levin, E.D., Hall, B.J., Rezvani, A.H.: Heterogeneity across brain regions and neurotransmitter interactions with nicotinic effects on memory function. Neurobiol. Genet. Nicotine Tob., 87–101 (2015)

    Google Scholar 

  42. Nega, S., Marquez, P., Hamid, A., et al.: The role of pituitary adenylyl cyclase activating polypeptide in affective signs of nicotine withdrawal. J. Neurosci. Res. 98(8), 1549–1560 (2020)

    Article  Google Scholar 

  43. Dehkordi, O., Rose, J.E., Millis, R.M., et al.: GABAergic neurons as putative neurochemical substrate mediating aversive effects of nicotine. J. Alcohol. Drug Depend. 6(2) (2018)

    Google Scholar 

  44. Saint-Mleux, B., Eggermann, E., Bisetti, A., et al.: Nicotinic enhancement of the noradrenergic inhibition of sleep-promoting neurons in the ventrolateral preoptic area. J. Neurosci. 24(1), 63–67 (2004)

    Article  Google Scholar 

  45. Qi, X., Guzhva, L., Yang, Z., et al.: Overexpression of CRF in the BNST diminishes dysphoria but not anxiety-like behavior in nicotine withdrawing rats. Eur. Neuropsychopharmacol. 26(9), 1378–1389 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundations of China under Grant 62172403, the Distinguished Young Scholars Fund of Guangdong under Grant 2021B1515020019, the Excellent Young Scholars of Shenzhen under Grant RCYX20200714114641211 and Shenzhen Key Basic Research Project under Grant JCYJ20200109115641762.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuqiang Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jing, C., Gong, C., Chen, Z., Wang, S. (2023). Graph Diffusion Reconstruction Network for Addictive Brain-Networks Identification. In: Liu, F., Zhang, Y., Kuai, H., Stephen, E.P., Wang, H. (eds) Brain Informatics. BI 2023. Lecture Notes in Computer Science(), vol 13974. Springer, Cham. https://doi.org/10.1007/978-3-031-43075-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43075-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43074-9

  • Online ISBN: 978-3-031-43075-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics