Evaluating the Impact and Usability of an AI-Driven Feedback System for Learning Design | SpringerLink
Skip to main content

Evaluating the Impact and Usability of an AI-Driven Feedback System for Learning Design

  • Conference paper
  • First Online:
Responsive and Sustainable Educational Futures (EC-TEL 2023)

Abstract

Despite the momentum that Artificial Intelligence (AI) is gaining in education, its role and impact on teachers’ learning design practices are still underexplored. This paper reports an experimental study (N = 38) taking place in a teacher training where an AI-driven feedback system aided teachers in the creation of learning designs. The study analyses the impact that using the AI feedback had on the quality of designs that teachers created, and the usability evaluation of the system. We noticed statistically significant differences between the designs created by the randomly assigned teachers in the experimental (using AI) and control group (without AI), suggesting that AI algorithms specialized to perform specific tasks related to the learning design could help teachers to better meet their design goals. While teachers graded the usability of the feedback system as above average, they also found it easy to use and its functions well integrated. In open-ended questions, teachers expressed doubts about their trust in AI systems and the impact that they may have in school communities, suggesting that future work should explore not only the long-term impact that using AI can have on teachers’ design practices, but also on their perceptions and understanding of the technology.

This research has been partially funded by the European Union in the context of Twinning (EuropeAid/160712/ID/ACT/ACT/DZ), and the Estonian Research Council’s Personal Research Grant (PRG1634).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10295
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12869
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://bit.ly/2023ai4lPparticipants.

  2. 2.

    https://bit.ly/2023ai4ldGeneralForm.

  3. 3.

    https://bit.ly/2023ai4ldAIfeedbackForm.

  4. 4.

    https://bit.ly/2023ai4ldFlowchartReportexample.

  5. 5.

    https://bit.ly/2023ai4ldFullDataset.

  6. 6.

    https://bit.ly/2023ai4ldStatisticalTests.

  7. 7.

    https://bit.ly/2023ai4ldSUS.

References

  1. Brooke, J., et al.: SUS - a quick and dirty usability scale. Usabil. Eval. Ind. 189(194), 4–7 (1996)

    Google Scholar 

  2. Cavalcanti, A.P., et al.: Automatic feedback in online learning environments: a systematic literature review. Comput. Educ. Artif. Intell. 2, 100027 (2021)

    Article  Google Scholar 

  3. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  4. Di Mitri, D., Schneider, J., Specht, M., Drachsler, H.: From signals to knowledge: a conceptual model for multimodal learning analytics. J. Comput. Assist. Learn. 34(4), 338–349 (2018)

    Article  Google Scholar 

  5. Hernández-Leo, D., et al.: An integrated environment for learning design. Front. ICT 5, 9 (2018)

    Article  Google Scholar 

  6. Holstein, K., Aleven, V., Rummel, N.: A conceptual framework for human–AI hybrid adaptivity in education. In: Bittencourt, I.I., Cukurova, M., Muldner, K., Luckin, R., Millán, E. (eds.) AIED 2020. LNCS (LNAI), vol. 12163, pp. 240–254. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52237-7_20

    Chapter  Google Scholar 

  7. Krathwohl, D.R.: A revision of bloom’s taxonomy: an overview. Theory Pract. 41(4), 212–218 (2002)

    Article  Google Scholar 

  8. Kratochwill, T.R., et al.: Single-case intervention research design standards. Remedial Spec. Educ. 34(1), 26–38 (2013)

    Article  Google Scholar 

  9. Lockyer, L., Heathcote, E., Dawson, S.: Informing pedagogical action: aligning learning analytics with learning design. Am. Behav. Sci. 57(10), 1439–1459 (2013)

    Article  Google Scholar 

  10. Maguire, M., Delahunt, B.: Doing a thematic analysis: a practical, step-by-step guide for learning and teaching scholars. All Ireland J. High. Educ. 9(3) (2017)

    Google Scholar 

  11. Mavrikis, M., Cukurova, M., Di Mitri, D., Schneider, J., Drachsler, H.: A short history, emerging challenges and co-operation structures for artificial intelligence in education. Bildung und Erziehung 74(3), 249–263 (2021)

    Article  Google Scholar 

  12. Molenaar, I.: Towards hybrid human-AI learning technologies. Eur. J. Educ. 57(4), 632–645 (2022)

    Article  Google Scholar 

  13. Moreno-Marcos, P.M., Muñoz-Merino, P.J., Maldonado-Mahauad, J., Perez-Sanagustin, M., Alario-Hoyos, C., Kloos, C.D.: Temporal analysis for dropout prediction using self-regulated learning strategies in self-paced MOOCs. Comput. Educ. 145, 103728 (2020)

    Article  Google Scholar 

  14. Pedaste, M., et al.: Phases of inquiry-based learning: definitions and the inquiry cycle. Educ. Res. Rev. 14, 47–61 (2015)

    Article  Google Scholar 

  15. Perez-Alvarez, R., Jivet, I., Pérez-Sanagustin, M., Scheffel, M., Verbert, K.: Tools designed to support self-regulated learning in online learning environments: a systematic review. IEEE Trans. Learn. Technol. (2022)

    Google Scholar 

  16. Persico, D., Pozzi, F.: Informing learning design with learning analytics to improve teacher inquiry. Br. J. Edu. Technol. 46(2), 230–248 (2015)

    Article  Google Scholar 

  17. Pishtari, G., Prieto, L.P., Rodríguez-Triana, M.J., Martinez-Maldonado, R.: Design analytics for mobile learning: scaling up the classification of learning designs based on cognitive and contextual elements. J. Learn. Anal. 9(2), 236–252 (2022)

    Article  Google Scholar 

  18. Pishtari, G., et al.: Learning design and learning analytics in mobile and ubiquitous learning: a systematic review. Br. J. Educ. Technol. 51(4), 1078–1100 (2020)

    Google Scholar 

  19. Pishtari, G., Rodríguez-Triana, M.J.: An analysis of mobile learning tools in terms of pedagogical affordances and support to the learning activity life cycle. In: Gil, E., Mor, Y., Dimitriadis, Y., Köppe, C. (eds.) Hybrid Learning Spaces. UTLP, pp. 167–183. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-88520-5_10

    Chapter  Google Scholar 

  20. Pishtari, G., Rodríguez-Triana, M.J., Prieto, L.P., Ruiz-Calleja, A., Väljataga, T.: What kind of learning designs do practitioners create for mobile learning? Lessons learnt from two in-the-wild case studies. J. Comput. Assist. Learn. (2022)

    Google Scholar 

  21. Pishtari, G., Rodríguez-Triana, M.J., Väljataga, T.: A multi-stakeholder perspective of analytics for learning design in location-based learning. Int. J. Mob. Blend. Learn. (IJMBL) 13(1), 1–17 (2021)

    Article  Google Scholar 

  22. Rodríguez-Triana, M.J., Prieto, L.P., Pishtari, G.: What do learning designs show about pedagogical adoption? An analysis approach and a case study on inquiry-based learning. In: De Laet, T., Klemke, R., Alario-Hoyos, C., Hilliger, I., Ortega-Arranz, A. (eds.) EC-TEL 2021. LNCS, vol. 12884, pp. 275–288. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86436-1_21

    Chapter  Google Scholar 

  23. Sharples, M.: Making sense of context for mobile learning. In: Mobile Learning, pp. 140–153. Routledge, London (2015)

    Google Scholar 

  24. Sie, R.L., et al.: Artificial intelligence to enhance learning design in UOW online, a unified approach to fully online learning. In: 2018 IEEE International Conference on Teaching, Assessment, and Learning for Engineering (TALE), pp. 761–767. IEEE (2018)

    Google Scholar 

  25. Spikol, D., Ruffaldi, E., Dabisias, G., Cukurova, M.: Supervised machine learning in multimodal learning analytics for estimating success in project-based learning. J. Comput. Assist. Learn. 34(4), 366–377 (2018)

    Article  Google Scholar 

  26. Tlili, A., et al.: What if the devil is my guardian angel: Chatgpt as a case study of using chatbots in education. Smart Learn. Environ. 10(1), 15 (2023)

    Article  Google Scholar 

  27. Vanlommel, K., Van Gasse, R., Vanhoof, J., Van Petegem, P.: Teachers’ decision-making: data based or intuition driven? Int. J. Educ. Res. 83, 75–83 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerti Pishtari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pishtari, G., Sarmiento-Márquez, E.M., Rodríguez-Triana, M.J., Wagner, M., Ley, T. (2023). Evaluating the Impact and Usability of an AI-Driven Feedback System for Learning Design. In: Viberg, O., Jivet, I., Muñoz-Merino, P., Perifanou, M., Papathoma, T. (eds) Responsive and Sustainable Educational Futures. EC-TEL 2023. Lecture Notes in Computer Science, vol 14200. Springer, Cham. https://doi.org/10.1007/978-3-031-42682-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42682-7_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42681-0

  • Online ISBN: 978-3-031-42682-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics