Abstract
Written reflective practice is a regular exercise pre-service teachers perform during their higher education. Usually, their lecturers are expected to provide individual feedback, which can be a challenging task to perform on a regular basis. In this paper, we present the first open-source automated feedback tool based on didactic theory and implemented as a hybrid AI system. We describe the components and discuss the advantages and disadvantages of our system compared to the state-of-art generative large language models. The main objective of our work is to enable better learning outcomes for students and to complement the teaching activities of lecturers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
All ML models are available in our OSF depository (https://osf.io/ytesn/), while linguistic processing code can be shared upon request.
- 2.
This still non-published data can be obtained upon request.
- 3.
- 4.
We use Connective-Lex list for German: https://doi.org/10.4000/discours.10098.
- 5.
References
Batbaatar, E., Li, M., Ryu, K.H.: Semantic-emotion neural network for emotion recognition from text. IEEE Access 7, 111866–111878 (2019). https://doi.org/10.1109/ACCESS.2019.2934529
Becker, A.: 83 Prozent der Studenten brechen Lehramts-Studium ab. Nordkurier (2021)
Bird, S., Klein, E., Loper, E.: Natural Language Processing with Python: Analyzing Text with the Natural Language Toolkit. O’Reilly Media, Inc., Sebastopol (2009)
Brown, T.B., et al.: Language models are few-shot learners (2020)
Cevher, D., Zepf, S., Klinger, R.: Towards multimodal emotion recognition in German speech events in cars using transfer learning (2019)
Chen, Y., Yu, B., Zhang, X., Yu, Y.: Topic modeling for evaluating students’ reflective writing: a case study of pre-service teachers’ journals. In: Proceedings of the Sixth International Conference on Learning Analytics & Knowledge, LAK 2016, pp. 1–5. Association for Computing Machinery, New York, NY, USA (2016). https://doi.org/10.1145/2883851.2883951
Chiorrini, A., Diamantini, C., Mircoli, A., Potena, D.: Emotion and sentiment analysis of tweets using bert. In: EDBT/ICDT Workshops (2021)
De Lin, O., Gottipati, S., Ling, L.S., Shankararaman, V.: Mining informal & short student self-reflections for detecting challenging topics - a learning outcomes insight dashboard. In: 2021 IEEE Frontiers in Education Conference (FIE), pp. 1–9 (2021). https://doi.org/10.1109/FIE49875.2021.9637181
Ekman, P.: Basic emotions. and book of cognition and emotion 98, 16 (2023)
Elands, P., Huizing, A., Kester, J., Peeters, M.M.M., Oggero, S.: Governing ethical and effective behaviour of intelligent systems: a novel framework for meaningful human control in a military context. Militaire Spectator 188(6), 302–313 (2019)
Fleck, R., Fitzpatrick, G.: Reflecting on reflection: framing a design landscape. In: Proceedings of the 22nd Conference of the Computer-Human Interaction Special Interest Group of Australia on Computer-Human Interaction, OZCHI 2010, pp. 216–223. Association for Computing Machinery, New York, NY, USA (2010). https://doi.org/10.1145/1952222.1952269
Geden, M., Emerson, A., Carpenter, D., Rowe, J.P., Azevedo, R., Lester, J.C.: Predictive student modeling in game-based learning environments with word embedding representations of reflection. Int. J. Artif. Intell. Educ. 31, 1–23 (2021)
Gibbs, G., Unit, G.B.F.E.: Learning by Doing: A Guide to Teaching and Learning Methods. FEU. Oxford Brookes University, Oxford (1988)
Grootendorst, M.R.: Bertopic: neural topic modeling with a class-based tf-idf procedure. ArXiv (2022)
Guhr, O., Schumann, A.K., Bahrmann, F., Böhme, H.J.: Training a broad-coverage German sentiment classification model for dialog systems. In: Proceedings of the 12th Language Resources and Evaluation Conference, pp. 1627–1632. European Language Resources Association, Marseille, France, May 2020. https://aclanthology.org/2020.lrec-1.202
Jena, R.K.: Sentiment mining in a collaborative learning environment: capitalising on big data. Behav. Inf. Technol. 38(9), 986–1001 (2019). https://doi.org/10.1080/0144929X.2019.1625440
Ji, Z., et al.: Survey of hallucination in natural language generation. ACM Comput. Surv. 55(12), 1–38 (2023). https://doi.org/10.1145/3571730
Jung, Y., Wise, A.F.: How and how well do students reflect?: multi-dimensional automated reflection assessment in health professions education. In: Proceedings of the Tenth International Conference on Learning Analytics & Knowledge (2020)
Klamm, C., Rehbein, I., Ponzetto, S.: Frameast: a framework for second-level agenda setting in parliamentary debates through the lense of comparative agenda topics. ParlaCLARIN III at LREC2022 (2022)
Klemm, K., Zorn, D.: Steigende Schülerzahlen im Primarbereich: Lehrkräftemangel deutlich stärker als von der KMK erwartet. Bertelsmann Stiftung, September 2019
Knight, S., et al.: Acawriter: a learning analytics tool for formative feedback on academic writing. J. Writing Res. 12(1), 141–186 (2020). https://doi.org/10.17239/jowr-2020.12.01.06
Kovanović, V., et al.: Understand students’ self-reflections through learning analytics. In: Proceedings of the 8th International Conference on Learning Analytics and Knowledge, LAK 2018, pp. 389–398. Association for Computing Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3170358.3170374
Liu, M., Kitto, K., Buckingham Shum, S.: Combining factor analysis with writing analytics for the formative assessment of written reflection. Comput. Hum. Behav. 120, 106733 (2021). https://doi.org/10.1016/j.chb.2021.106733
Liu, M., Shum, S.B., Mantzourani, E., Lucas, C.: Evaluating machine learning approaches to classify pharmacy students’ reflective statements. In: Isotani, S., Millán, E., Ogan, A., Hastings, P., McLaren, B., Luckin, R. (eds.) AIED 2019, Part I. LNCS (LNAI), vol. 11625, pp. 220–230. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23204-7_19
Liu, Y., et al.: Roberta: a robustly optimized bert pretraining approach. ArXiv (2019)
Lui, M., Baldwin, T.: langid.py: an off-the-shelf language identification tool. In: Proceedings of the ACL 2012 System Demonstrations. pp. 25–30. Association for Computational Linguistics, Jeju Island, Korea (2012). https://aclanthology.org/P12-3005
Manakul, P., Liusie, A., Gales, M.J.F.: Selfcheckgpt: zero-resource black-box hallucination detection for generative large language models (2023)
McCallum, A.K.: Mallet: a machine learning for language toolkit. https://mallet.cs.umass.edu (2002)
Napanoy, J., Gayagay, G., Tuazon, J.: Difficulties encountered by pre-service teachers: basis of a pre-service training program. Univ. J. Educ. Res. 9, 342–349 (2021). https://doi.org/10.13189/ujer.2021.090210
OpenAI: Gpt-4 technical report (2023)
Plutchik, R.: A psychoevolutionary theory of emotions. Soc. Sci. Inf. 21(4–5), 529–553 (1982). https://doi.org/10.1177/053901882021004003
Schmid, H., Laws, F.: Estimation of conditional probabilities with decision trees and an application to fine-grained POS tagging. In: Proceedings of the 22nd International Conference on Computational Linguistics - COLING 2008. Association for Computational Linguistics, Morristown, NJ, USA (2008)
Shashkov, A., Gold, R., Hemberg, E., Kong, B., Bell, A., O’Reilly, U.M.: Analyzing student reflection sentiments and problem-solving procedures in moocs. In: Proceedings of the Eighth ACM Conference on Learning @ Scale, L@S 2021, pp. 247–250. Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3430895.3460150
Sidarenka, U.: PotTS: the potsdam twitter sentiment corpus. In: Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016), pp. 1133–1141. European Language Resources Association (ELRA), Portorož, Slovenia, May 2016. https://aclanthology.org/L16-1181
Solopova, V., Popescu, O.I., Chikobava, M., Romeike, R., Landgraf, T., Benzmüller, C.: A German corpus of reflective sentences. In: Proceedings of the 18th International Conference on Natural Language Processing (ICON), pp. 593–600. NLP Association of India (NLPAI), National Institute of Technology Silchar, Silchar, India, December 2021. https://aclanthology.org/2021.icon-main.72
Ullmann, T.: Automated analysis of reflection in writing: validating machine learning approaches. Int. J. Artif. Intell. Educ. 29 (2019). https://doi.org/10.1007/s40593-019-00174-2
Wojatzki, M., Ruppert, E., Holschneider, S., Zesch, T., Biemann, C.: GermEval 2017: shared task on aspect-based sentiment in social media customer feedback. In: Proceedings of the GermEval 2017 - Shared Task on Aspect-based Sentiment in Social Media Customer Feedback, pp. 1–12. Berlin, Germany (2017)
Wulff, D., et al.: Computer-based classification of preservice physics teachers’ written reflections. J. Sci. Educ. Technol. 30, 1–15 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Solopova, V. et al. (2023). PapagAI: Automated Feedback for Reflective Essays. In: Seipel, D., Steen, A. (eds) KI 2023: Advances in Artificial Intelligence. KI 2023. Lecture Notes in Computer Science(), vol 14236. Springer, Cham. https://doi.org/10.1007/978-3-031-42608-7_16
Download citation
DOI: https://doi.org/10.1007/978-3-031-42608-7_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-42607-0
Online ISBN: 978-3-031-42608-7
eBook Packages: Computer ScienceComputer Science (R0)