Abstract
Document layout analysis (DLA) is the task of detecting the distinct, semantic content within a document and correctly classifying these items into an appropriate category (e.g., text, title, figure). DLA pipelines enable users to convert documents into structured machine-readable formats that can then be used for many useful downstream tasks. Most existing state-of-the-art (SOTA) DLA models represent documents as images, discarding the rich metadata available in electronically generated PDFs. Directly leveraging this metadata, we represent each PDF page as a structured graph and frame the DLA problem as a graph segmentation and classification problem. We introduce the Graph-based Layout Analysis Model (GLAM), a lightweight graph neural network competitive with SOTA models on two challenging DLA datasets - while being an order of magnitude smaller than existing models. In particular, the 4-million parameter GLAM model outperforms the leading 140M+ parameter computer vision-based model on 5 of the 11 classes on the DocLayNet dataset. A simple ensemble of these two models achieves a new state-of-the-art on DocLayNet, increasing mAP from 76.8 to 80.8. Overall, GLAM is over 5 times more efficient than SOTA models, making GLAM a favorable engineering choice for DLA tasks.
J. Wang and M. Krumdick—The authors contributed equally to this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
We use an NVIDIA Tesla T4 as GPU in our experiments.
References
pdfminer.six (2022). http://github.com/pdfminer/pdfminer.six
YOLOv5 SOTA realtime instance segmentation (2022). http://github.com/ultralytics/yolov5
Binmakhashen, G.M., Mahmoud, S.A.: Document layout analysis: a comprehensive survey. ACM Comput. Surv. (CSUR) 52(6), 1–36 (2019)
Bunke, H., Riesen, K.: Recent advances in graph-based pattern recognition with applications in document analysis. Pattern Recogn. 44(5), 1057–1067 (2011). ISSN 0031-3203. https://doi.org/10.1016/j.patcog.2010.11.015.
Cai, Z., Vasconcelos, N.: Cascade R-CNN: delving into high quality object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6154–6162 (2018)
Chao, H., Fan, J.: Layout and content extraction for PDF documents. In: Marinai, S., Dengel, A.R. (eds.) DAS 2004. LNCS, vol. 3163, pp. 213–224. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28640-0_20
Chen, G., et al.: A survey of the four pillars for small object detection: multiscale representation, contextual information, super-resolution, and region proposal. IEEE Trans. Syst. Man Cybern. Syst., 1–18 (2020). https://doi.org/10.1109/TSMC.2020.3005231
Cui, L., Xu, Y., Lv, T., Wei, F.: Document AI: benchmarks, models and applications. arXiv preprint arXiv:2111.08609 (2021)
Du, J., Zhang, S., Wu, G., Moura, J.M.F., Kar, S.: Topology adaptive graph convolutional networks. arXiv preprint arXiv:1710.10370 (2017)
Gemelli, A., Vivoli, E., Marinai, S.: Graph neural networks and representation embedding for table extraction in pdf documents. In: 2022 26th International Conference on Pattern Recognition (ICPR), pp. 1719–1726 (2022). https://doi.org/10.1109/ICPR56361.2022.9956590
Gu, J., et al.: Unified pretraining framework for document understanding. arXiv e-prints, pages arXiv-2204 (2022)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2980–2988 (2017). https://doi.org/10.1109/ICCV.2017.322
Holecek, M., Hoskovec, A., Baudiš, P., Klinger, P.: Table understanding in structured documents. In: 2019 International Conference on Document Analysis and Recognition Workshops (ICDARW), vol. 5, pp. 158–164 (2019). https://doi.org/10.1109/ICDARW.2019.40098
Huang, Y., Lv, T., Cui, L., Lu, Y., Wei, F.: LayoutLMv3: pre-training for document AI with unified text and image masking. arXiv preprint arXiv:2204.08387 (2022)
Huang, Y., Lv, T., Cui, L., Lu, Y., Wei, F.: LayoutLMv3: pre-training for document AI with unified text and image masking. In: ACM Multimedia 2022, October 2022. www.microsoft.com/en-us/research/publication/layoutlmv3-pre-training-for-document-ai-with-unified-text-and-image-masking/
Kavasidis, I., et al.: A saliency-based convolutional neural network for table and chart detection in digitized documents. In: Ricci, E., et al. (eds.) Image Analysis and Processing - ICIAP 2019, pp. 292–302. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30645-8_27. ISBN 978-3-030-30645-8
Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, 24–26 April 2017, Conference Track Proceedings. OpenReview.net (2017). http://openreview.net/forum?id=SJU4ayYgl
Lewis, D., Agam, G., Argamon, S., Frieder, O., Grossman, D., Heard, J.: Building a test collection for complex document information processing. In: Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2006, pp. 665–666. Association for Computing Machinery, New York (2006). ISBN 1595933697. https://doi.org/10.1145/1148170.1148307
Li, C., et al.: StructuralLM: structural pre-training for form understanding. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 6309–6318, August 2021. https://doi.org/10.18653/v1/2021.acl-long.493
Li, J., Xu, Y., Lv, T., Cui, L., Zhang, C., Wei, F.: DIT: self-supervised pre-training for document image transformer. arXiv preprint arXiv:2203.02378 (2022)
Li, X.-Hu., Yin, F., Liu, C.-L.: Page segmentation using convolutional neural network and graphical model. In: Bai, X., Karatzas, D., Lopresti, D. (eds.) Document Analysis Systems, pp. 231–245. Springer, Cham (2020). ISBN 978-3-030-57058-3. https://doi.org/10.1007/978-3-030-57058-3_17
Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)
Liu, X., Gao, F., Zhang, Q., Zhao, H.: Graph convolution for multimodal information extraction from visually rich documents. In: NAACL (2019)
Pfitzmann, B., Auer, C., Dolfi, M., Nassar, A.S., Staar, P.W.J.: DocLayNet: a large human-annotated dataset for document-layout analysis. arXiv preprint arXiv:2206.01062 (2022)
Qasim, S., Mahmood, H., Shafait, F.: Rethinking table recognition using graph neural networks. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 142–147. IEEE Computer Society, Los Alamitos, CA, USA, September 2019. https://doi.org/10.1109/ICDAR.2019.00031
Riba, P., Dutta, A., Goldmann, L., Fornés, A., Ramos, O., Lladós, J.: Table detection in invoice documents by graph neural networks. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 122–127 (2019). https://doi.org/10.1109/ICDAR.2019.00028
Vaswani, A., et al.: Attention is all you need. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates Inc. (2017). http://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
Wei, M., He, Y., Zhang, Q.: Robust layout-aware IE for visually rich documents with pre-trained language models (2020)
Xu, Y., et al.: LayoutLMv2: multi-modal pre-training for visually-rich document understanding. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 2579–2591, August 2021. Association for Computational Linguistics. https://doi.org/10.18653/v1/2021.acl-long.201
Xu, Y., Li, M., Cui, L., Huang, S., Wei, F., Zhou, M.: Layoutlm: Pre-training of text and layout for document image understanding. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1192–1200 (2020)
Yang, H., et al.: Pipelines for procedural information extraction from scientific literature: towards recipes using machine learning and data science. In: 2019 International Conference on Document Analysis and Recognition Workshops (ICDARW), vol. 2, pp. 41–46 (2019). https://doi.org/10.1109/ICDARW.2019.10037
Zhang, P., et al.: VSR: a unified framework for document layout analysis combining vision, semantics and relations. In: Lladós, J., Lopresti, D., Uchida, S. (eds.) Document Analysis and Recognition - ICDAR 2021, pp. 115–130. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86549-8_8. ISBN 978-3-030-86549-8
Zhong, X., Tang, J., Yepes, A.J.: PublayNet: largest dataset ever for document layout analysis. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 1015–1022. IEEE (2019)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, J. et al. (2023). A Graphical Approach to Document Layout Analysis. In: Fink, G.A., Jain, R., Kise, K., Zanibbi, R. (eds) Document Analysis and Recognition - ICDAR 2023. ICDAR 2023. Lecture Notes in Computer Science, vol 14191. Springer, Cham. https://doi.org/10.1007/978-3-031-41734-4_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-41734-4_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-41733-7
Online ISBN: 978-3-031-41734-4
eBook Packages: Computer ScienceComputer Science (R0)