Abstract
Adversarial attacks and defenses have gained increasing interest on computer vision systems in recent years, but as of today, most investigations are limited to natural images. However, many artificial intelligence models actually handle documentary data, which is very different from real world images. Hence, in this work, we try to apply the adversarial attack philosophy on documentary data and to protect models against such attacks. Our methodology is to implement untargeted gradient-based, transfer-based and score-based attacks and evaluate the impact of defenses such as adversarial training, JPEG input compression and grey-scale input transformation on the robustness of ResNet50 and EfficientNetB0 model architectures. To the best of our knowledge, no such work has been conducted by the community in order to study the impact of these attacks on the document image classification task.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Ares robustness library URL: https://github.com/thu-ml/ares.
- 2.
Meta AI. Document Image Classification. June 2020. URL: https://paperswithcode.com/task/document-image-classification.
- 3.
References
Afzal, M.Z., Kölsch, A., Ahmed, S., Liwicki, M.: Cutting the error by half: investigation of very deep cnn and advanced training strategies for document image classification. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), vol. 1, pp. 883–888. IEEE (2017)
Appalaraju, S., Jasani, B., Kota, B.U., Xie, Y., Manmatha, R.: Docformer: end-to-end transformer for document understanding. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 993–1003 (2021)
Carlini, N., et al.: On evaluating adversarial robustness (2019). arXiv preprint arXiv:1902.06705
Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 39–57. IEEE (2017)
Chakraborty, A., Alam, M., Dey, V., Chattopadhyay, A., Mukhopadhyay, D.: A survey on adversarial attacks and defences. CAAI Trans. Intell. Technol. 6(1), 25–45 (2021)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)
Dong, Y., et al.: Benchmarking adversarial robustness on image classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 321–331 (2020)
Dong, Y., et al.: Boosting adversarial attacks with momentum. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9185–9193 (2018)
Dong, Y., et al.: Efficient decision-based black-box adversarial attacks on face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7714–7722 (2019)
Dziugaite, G.K., Ghahramani, Z., Roy, D.M.: A study of the effect of jpg compression on adversarial images (2016). arXiv preprint arXiv:1608.00853
Ferrando, J., et al.: Improving accuracy and speeding up document image classification through parallel systems. In: Krzhizhanovskaya, V.V., et al. (eds.) ICCS 2020. LNCS, vol. 12138, pp. 387–400. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50417-5_29
Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples (2014). arXiv preprint arXiv:1412.6572
Harley, A.W., Ufkes, A., Derpanis, K.G.: Evaluation of deep convolutional nets for document image classification and retrieval. In: International Conference on Document Analysis and Recognition (ICDAR) (2015)
Harley, A.W., Ufkes, A., Derpanis, K.G.: Evaluation of deep convolutional nets for document image classification and retrieval. In: 2015 13th International Conference on Document Analysis and Recognition (ICDAR), pp. 991–995. IEEE (2015)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Jia, S., Ma, C., Yao, T., Yin, B., Ding, S., Yang, X.: Exploring frequency adversarial attacks for face forgery detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4103–4112 (2022)
Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Technical Report, University of Toronto, Toronto, Ontario (2009)
Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial machine learning at scale (2016). arXiv preprint arXiv:1611.01236
Kurakin, A., Goodfellow, I.J., Bengio, S.: Adversarial examples in the physical world. In: Artificial Intelligence Safety and Security, pp. 99–112. Chapman and Hall/CRC (2018)
Liu, Y., Cheng, Y., Gao, L., Liu, X., Zhang, Q., Song, J.: Practical evaluation of adversarial robustness via adaptive auto attack. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15105–15114 (2022)
Machado, G.R., Silva, E., Goldschmidt, R.R.: Adversarial machine learning in image classification: a survey toward the defender’s perspective. ACM Comput. Surv. (CSUR) 55(1), 1–38 (2021)
Moosavi-Dezfooli, S.M., Fawzi, A., Fawzi, O., Frossard, P.: Universal adversarial perturbations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1765–1773 (2017)
Papernot, N., et al.: Technical report on the cleverhans v2.1.0 adversarial examples library (2018). arXiv preprint arXiv:1610.00768
Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against deep learning systems using adversarial examples, vol. 1, no. 2, p. 3 (2016). arXiv preprint arXiv:1602.02697
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2014). arXiv preprint arXiv:1409.1556
Song, C., Shmatikov, V.: Fooling ocr systems with adversarial text images (2018). arXiv preprint arXiv:1802.05385
Sriramanan, G., Addepalli, S., Baburaj, A., et al.: Guided adversarial attack for evaluating and enhancing adversarial defenses. Adv. Neural Inf. Process. Syst. 33, 20297–20308 (2020)
Szegedy, C., et al.: Intriguing properties of neural networks (2013). arXiv preprint arXiv:1312.6199
Tan, M., Le, Q.: Efficientnet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)
Uesato, J., O’donoghue, B., Kohli, P., Oord, A.: Adversarial risk and the dangers of evaluating against weak attacks. In: International Conference on Machine Learning, pp. 5025–5034. PMLR (2018)
Xiong, Y., Lin, J., Zhang, M., Hopcroft, J.E., He, K.: Stochastic variance reduced ensemble adversarial attack for boosting the adversarial transferability. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14983–14992 (2022)
Xu, Y., et al.: Layoutlmv2: multi-modal pre-training for visually-rich document understanding (2020). arXiv preprint arXiv:2012.14740
Zhang, J., et al.: Towards efficient data free black-box adversarial attack. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15115–15125 (2022)
Zhang, W.E., Sheng, Q.Z., Alhazmi, A., Li, C.: Adversarial attacks on deep-learning models in natural language processing: a survey. ACM Trans. Intell. Syst. Technol. (TIST) 11(3), 1–41 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Fronteau, T., Paran, A., Shabou, A. (2023). Evaluating Adversarial Robustness on Document Image Classification. In: Fink, G.A., Jain, R., Kise, K., Zanibbi, R. (eds) Document Analysis and Recognition - ICDAR 2023. ICDAR 2023. Lecture Notes in Computer Science, vol 14191. Springer, Cham. https://doi.org/10.1007/978-3-031-41734-4_18
Download citation
DOI: https://doi.org/10.1007/978-3-031-41734-4_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-41733-7
Online ISBN: 978-3-031-41734-4
eBook Packages: Computer ScienceComputer Science (R0)