Bottom-Up and Top-Down Workflows for Hypercube- And Clustering-Based Knowledge Extractors | SpringerLink
Skip to main content

Bottom-Up and Top-Down Workflows for Hypercube- And Clustering-Based Knowledge Extractors

  • Conference paper
  • First Online:
Explainable and Transparent AI and Multi-Agent Systems (EXTRAAMAS 2023)

Abstract

Machine learning opaque models, currently exploited to carry out a wide variety of supervised and unsupervised learning tasks, are able to achieve impressive predictive performances. However, they act as black boxes (BBs) from the human standpoint, so they cannot be entirely trusted in critical applications unless there exists a method to extract symbolic and human-readable knowledge out of them.

In this paper we analyse a recurrent design adopted by symbolic knowledge extractors for BB predictors—that is, the creation of rules associated with hypercubic input space regions. We argue that this kind of partitioning may lead to suboptimum solutions when the data set at hand is sparse, high-dimensional, or does not satisfy symmetric constraints. We then propose two different knowledge-extraction workflows involving clustering approaches, highlighting the possibility to outperform existing knowledge-extraction techniques in terms of predictive performance on data sets of any kind.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 6634
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 8293
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://scikit-learn.org/stable/index.html.

  2. 2.

    https://github.com/psykei/psyke-python.

  3. 3.

    https://archive.ics.uci.edu/ml/datasets/ISTANBUL+STOCK+EXCHANGE.

  4. 4.

    https://archive.ics.uci.edu/ml/datasets/wine.

References

  1. Akbilgic, O., Bozdogan, H., Balaban, M.E.: A novel hybrid rbf neural networks model as a forecaster. Stat. Comput. 24, 365–375 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andrews, R., Geva, S.: RULEX & CEBP networks as the basis for a rule refinement system. In: Hallam, J. (ed.) Hybrid Problems, Hybrid Solutions, pp. 1–12. IOS Press (1995)

    Google Scholar 

  3. Azcarraga, A., Liu, M.D., Setiono, R.: Keyword extraction using backpropagation neural networks and rule extraction. In: The 2012 International Joint Conference on Neural Networks (IJCNN 2012), pp. 1–7. IEEE (2012). https://doi.org/10.1109/IJCNN.2012.6252618

  4. Baesens, B., Setiono, R., De Lille, V., Viaene, S., Vanthienen, J.: Building credit-risk evaluation expert systems using neural network rule extraction and decision tables. In: Storey, V.C., Sarkar, S., DeGross, J.I. (eds.) ICIS 2001 Proceedings, pp. 159–168. Association for Information Systems (2001). http://aisel.aisnet.org/icis2001/20

  5. Baesens, B., Setiono, R., Mues, C., Vanthienen, J.: Using neural network rule extraction and decision tables for credit-risk evaluation. Manage. Sci. 49(3), 312–329 (2003). https://doi.org/10.1287/mnsc.49.3.312.12739

    Article  MATH  Google Scholar 

  6. Barakat, N., Diederich, J.: Eclectic rule-extraction from support vector machines. Int. J. Comput. Inform. Eng. 2(5), 1672–1675 (2008). https://doi.org/10.5281/zenodo.1055511

    Article  Google Scholar 

  7. Benítez, J.M., Castro, J.L., Requena, I.: Are artificial neural networks black boxes? IEEE Trans. Neural Netw. 8(5), 1156–1164 (1997). https://doi.org/10.1109/72.623216

    Article  Google Scholar 

  8. Bologna, G., Pellegrini, C.: Three medical examples in neural network rule extraction. Phys. Medica 13, 183–187 (1997). https://archive-ouverte.unige.ch/unige:121360

  9. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression Trees. CRC Press (1984)

    Google Scholar 

  10. Calegari, R., Sabbatini, F.: The PSyKE technology for trustworthy artificial intelligence 13796, 3–16 (2023). https://doi.org/10.1007/978-3-031-27181-6_1, XXI International Conference of the Italian Association for Artificial Intelligence, AIxIA 2022, Udine, Italy, 28 November - 2 December, Proceedings (2022)

  11. Castillo, L.A., González Muñoz, A., Pérez, R.: Including a simplicity criterion in the selection of the best rule in a genetic fuzzy learning algorithm. Fuzzy Sets Syst. 120(2), 309–321 (2001). https://doi.org/10.1016/S0165-0114(99)00095-0

    Article  MathSciNet  MATH  Google Scholar 

  12. Ciatto, G., Calvaresi, D., Schumacher, M.I., Omicini, A.: An abstract framework for agent-based explanations in AI. In: El Fallah Seghrouchni, A., Sukthankar, G., An, B., Yorke-Smith, N. (eds.) 19th International Conference on Autonomous Agents and MultiAgent Systems, pp. 1816–1818. IFAAMAS (May 2020)

    Google Scholar 

  13. Craven, M.W., Shavlik, J.W.: Using sampling and queries to extract rules from trained neural networks. In: Machine Learning Proceedings 1994, pp. 37–45. Elsevier (1994). https://doi.org/10.1016/B978-1-55860-335-6.50013-1

  14. Craven, M.W., Shavlik, J.W.: Extracting tree-structured representations of trained networks. In: Touretzky, D.S., Mozer, M.C., Hasselmo, M.E. (eds.) Advances in Neural Information Processing Systems 8, Proceedings of the 1995 Conference, pp. 24–30. The MIT Press (Jun 1996)

    Google Scholar 

  15. Forina, M., Leardi, R., Armanino, C., Lanteri, S., Conti, P., Princi, P.: Parvus: An extendable package of programs for data exploration, classification and correlation. J. Chemom. 4(2), 191–193 (1988)

    Google Scholar 

  16. Franco, L., Subirats, J.L., Molina, I., Alba, E., Jerez, J.M.: Early breast cancer prognosis prediction and rule extraction using a new constructive neural network algorithm. In: Sandoval, F., Prieto, A., Cabestany, J., Graña, M. (eds.) IWANN 2007. LNCS, vol. 4507, pp. 1004–1011. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73007-1_121

    Chapter  Google Scholar 

  17. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. ACM Comput. Surv. 51(5), 1–42 (2018). https://doi.org/10.1145/3236009

    Article  Google Scholar 

  18. Hayashi, Y., Setiono, R., Yoshida, K.: A comparison between two neural network rule extraction techniques for the diagnosis of hepatobiliary disorders. Artif. Intell. Med. 20(3), 205–216 (2000). https://doi.org/10.1016/s0933-3657(00)00064-6

    Article  Google Scholar 

  19. Hofmann, A., Schmitz, C., Sick, B.: Rule extraction from neural networks for intrusion detection in computer networks. In: 2003 IEEE International Conference on Systems, Man and Cybernetics, vol. 2, pp. 1259–1265. IEEE (2003). https://doi.org/10.1109/ICSMC.2003.1244584

  20. Huysmans, J., Baesens, B., Vanthienen, J.: ITER: an algorithm for predictive regression rule extraction. In: Tjoa, A.M., Trujillo, J. (eds.) DaWaK 2006. LNCS, vol. 4081, pp. 270–279. Springer, Heidelberg (2006). https://doi.org/10.1007/11823728_26

    Chapter  Google Scholar 

  21. Kenny, E.M., Ford, C., Quinn, M., Keane, M.T.: Explaining black-box classifiers using post-hoc explanations-by-example: the effect of explanations and error-rates in XAI user studies. Artif. Intell. 294, 103459 (2021). https://doi.org/10.1016/j.artint.2021.103459

    Article  MathSciNet  MATH  Google Scholar 

  22. König, R., Johansson, U., Niklasson, L.: G-REX: A versatile framework for evolutionary data mining. In: 2008 IEEE International Conference on Data Mining Workshops (ICDM 2008 Workshops), pp. 971–974 (2008). https://doi.org/10.1109/ICDMW.2008.117

  23. Markowska-Kaczmar, U., Trelak, W.: Extraction of fuzzy rules from trained neural network using evolutionary algorithm. In: ESANN 2003, 11th European Symposium on Artificial Neural Networks, Bruges, Belgium, 23–25 April 2003, Proceedings, pp. 149–154 (2003). https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2003-9.pdf

  24. Núñez, H., Angulo, C., Català, A.: Rule extraction based on support and prototype vectors. In: Diederich, J. (ed.) Rule Extraction from Support Vector Machines. SCI, vol. 80, pp. 109–134. Springer (2008). https://doi.org/10.1007/978-3-540-75390-2_5

  25. Pedregosa, F., et al.: Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. (JMLR) 12, 2825–2830 (2011), https://dl.acm.org/doi/10.5555/1953048.2078195

  26. Rocha, A., Papa, J.P., Meira, L.A.A.: How far do we get using machine learning black-boxes?. Int. J. Patt. Recogn. Artifi. Intell. 26(02), 1261001-(1–23) (2012). https://doi.org/10.1142/S0218001412610010

  27. Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1(5), 206–215 (2019). https://doi.org/10.1038/s42256-019-0048-x

    Article  Google Scholar 

  28. Sabbatini, F., Calegari, R.: Symbolic knowledge extraction from opaque machine learning predictors: GridREx & PEDRO. In: Kern-Isberner, G., Lakemeyer, G., Meyer, T. (eds.) Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning, KR 2022, Haifa, Israel, 31 July - 5 August (2022). https://doi.org/10.24963/kr.2022/57

  29. Sabbatini, F., Ciatto, G., Calegari, R., Omicini, A.: On the design of PSyKE: a platform for symbolic knowledge extraction. In: Calegari, R., Ciatto, G., Denti, E., Omicini, A., Sartor, G. (eds.) WOA 2021–22nd Workshop “From Objects to Agents". CEUR Workshop Proceedings, vol. 2963, pp. 29–48, Bologna, Italy, 1–3 Sep, Proceedings, Sun SITE Central Europe, RWTH Aachen University (Oct 2021)

    Google Scholar 

  30. Sabbatini, F., Ciatto, G., Calegari, R., Omicini, A.: Hypercube-based methods for symbolic knowledge extraction: Towards a unified model. In: Ferrando, A., Mascardi, V. (eds.) WOA 2022–23rd Workshop “From Objects to Agents", CEUR Workshop Proceedings, vol. 3261, pp. 48–60. Sun SITE Central Europe, RWTH Aachen University (Nov 2022). http://ceur-ws.org/Vol-3261/paper4.pdf

  31. Sabbatini, F., Ciatto, G., Calegari, R., Omicini, A.: Symbolic knowledge extraction from opaque ML predictors in PSyKE: Platform design & experiments. Intelligenza Artificiale 16(1), 27–48 (2022). https://doi.org/10.3233/IA-210120

    Article  Google Scholar 

  32. Sabbatini, F., Ciatto, G., Omicini, A.: GridEx: an algorithm for knowledge extraction from black-box regressors. In: Calvaresi, D., Najjar, A., Winikoff, M., Främling, K. (eds.) EXTRAAMAS 2021. LNCS (LNAI), vol. 12688, pp. 18–38. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-82017-6_2

    Chapter  Google Scholar 

  33. Sabbatini, F., Ciatto, G., Omicini, A.: Semantic Web-based interoperability for intelligent agents with PSyKE. In: Calvaresi, D., Najjar, A., Winikoff, M., Främling, K. (eds.) Explainable and Transparent AI and Multi-Agent Systems. LNCS, vol. 13283, chap. 8, pp. 124–142. Springer (2022). https://doi.org/10.1007/978-3-031-15565-9_8

  34. Sabbatini, F., Grimani, C.: Symbolic knowledge extraction from opaque predictors applied to cosmic-ray data gathered with LISA Pathfinder. Aeronau. Aerospace Open Access J. 6(3), 90–95 (2022). https://doi.org/10.15406/aaoaj.2022.06.00145

  35. Saito, K., Nakano, R.: Extracting regression rules from neural networks. Neural Netw. 15(10), 1279–1288 (2002). https://doi.org/10.1016/S0893-6080(02)00089-8

    Article  Google Scholar 

  36. Schmitz, G.P.J., Aldrich, C., Gouws, F.S.: ANN-DT: an algorithm for extraction of decision trees from artificial neural networks. IEEE Trans. Neural Netw. 10(6), 1392–1401 (1999). https://doi.org/10.1109/72.809084

    Article  Google Scholar 

  37. Setiono, R., Baesens, B., Mues, C.: Rule extraction from minimal neural networks for credit card screening. Int. J. Neural Syst. 21(04), 265–276 (2011). https://doi.org/10.1142/S0129065711002821

    Article  Google Scholar 

  38. Setiono, R., Leow, W.K.: FERNN: an algorithm for fast extraction of rules from neural networks. Appl. Intell. 12(1–2), 15–25 (2000). https://doi.org/10.1023/A:1008307919726

    Article  Google Scholar 

  39. Setiono, R., Leow, W.K., Zurada, J.M.: Extraction of rules from artificial neural networks for nonlinear regression. IEEE Trans. Neural Netw. 13(3), 564–577 (2002). https://doi.org/10.1109/TNN.2002.1000125

    Article  Google Scholar 

  40. Setiono, R., Liu, H.: NeuroLinear: from neural networks to oblique decision rules. Neurocomputing 17(1), 1–24 (1997). https://doi.org/10.1016/S0925-2312(97)00038-6

    Article  Google Scholar 

  41. Setiono, R., Thong, J.Y.L.: An approach to generate rules from neural networks for regression problems. Eur. J. Oper. Res. 155(1), 239–250 (2004). https://doi.org/10.1016/S0377-2217(02)00792-0

    Article  MATH  Google Scholar 

  42. Steiner, M.T.A., Steiner Neto, P.J., Soma, N.Y., Shimizu, T., Nievola, J.C.: Using neural network rule extraction for credit-risk evaluation. Int. J. Comput. Sci. Netw. Sec. 6(5A), 6–16 (2006). http://paper.ijcsns.org/07_book/200605/200605A02.pdf

  43. Thrun, S.B.: Extracting rules from artifical neural networks with distributed representations. In: Tesauro, G., Touretzky, D.S., Leen, T.K. (eds.) Advances in Neural Information Processing Systems 7, [NIPS Conference, Denver, Colorado, USA, 1994]. pp. 505–512. MIT Press (1994). http://papers.nips.cc/paper/924-extracting-rules-from-artificial-neural-networks-with-distributed-representations

Download references

Acknowledgments

This work has been supported by the EU ICT-48 2020 project TAILOR (No. 952215).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Sabbatini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sabbatini, F., Calegari, R. (2023). Bottom-Up and Top-Down Workflows for Hypercube- And Clustering-Based Knowledge Extractors. In: Calvaresi, D., et al. Explainable and Transparent AI and Multi-Agent Systems. EXTRAAMAS 2023. Lecture Notes in Computer Science(), vol 14127. Springer, Cham. https://doi.org/10.1007/978-3-031-40878-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40878-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40877-9

  • Online ISBN: 978-3-031-40878-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics