Abstract
Machine learning opaque models, currently exploited to carry out a wide variety of supervised and unsupervised learning tasks, are able to achieve impressive predictive performances. However, they act as black boxes (BBs) from the human standpoint, so they cannot be entirely trusted in critical applications unless there exists a method to extract symbolic and human-readable knowledge out of them.
In this paper we analyse a recurrent design adopted by symbolic knowledge extractors for BB predictors—that is, the creation of rules associated with hypercubic input space regions. We argue that this kind of partitioning may lead to suboptimum solutions when the data set at hand is sparse, high-dimensional, or does not satisfy symmetric constraints. We then propose two different knowledge-extraction workflows involving clustering approaches, highlighting the possibility to outperform existing knowledge-extraction techniques in terms of predictive performance on data sets of any kind.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Akbilgic, O., Bozdogan, H., Balaban, M.E.: A novel hybrid rbf neural networks model as a forecaster. Stat. Comput. 24, 365–375 (2014)
Andrews, R., Geva, S.: RULEX & CEBP networks as the basis for a rule refinement system. In: Hallam, J. (ed.) Hybrid Problems, Hybrid Solutions, pp. 1–12. IOS Press (1995)
Azcarraga, A., Liu, M.D., Setiono, R.: Keyword extraction using backpropagation neural networks and rule extraction. In: The 2012 International Joint Conference on Neural Networks (IJCNN 2012), pp. 1–7. IEEE (2012). https://doi.org/10.1109/IJCNN.2012.6252618
Baesens, B., Setiono, R., De Lille, V., Viaene, S., Vanthienen, J.: Building credit-risk evaluation expert systems using neural network rule extraction and decision tables. In: Storey, V.C., Sarkar, S., DeGross, J.I. (eds.) ICIS 2001 Proceedings, pp. 159–168. Association for Information Systems (2001). http://aisel.aisnet.org/icis2001/20
Baesens, B., Setiono, R., Mues, C., Vanthienen, J.: Using neural network rule extraction and decision tables for credit-risk evaluation. Manage. Sci. 49(3), 312–329 (2003). https://doi.org/10.1287/mnsc.49.3.312.12739
Barakat, N., Diederich, J.: Eclectic rule-extraction from support vector machines. Int. J. Comput. Inform. Eng. 2(5), 1672–1675 (2008). https://doi.org/10.5281/zenodo.1055511
Benítez, J.M., Castro, J.L., Requena, I.: Are artificial neural networks black boxes? IEEE Trans. Neural Netw. 8(5), 1156–1164 (1997). https://doi.org/10.1109/72.623216
Bologna, G., Pellegrini, C.: Three medical examples in neural network rule extraction. Phys. Medica 13, 183–187 (1997). https://archive-ouverte.unige.ch/unige:121360
Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression Trees. CRC Press (1984)
Calegari, R., Sabbatini, F.: The PSyKE technology for trustworthy artificial intelligence 13796, 3–16 (2023). https://doi.org/10.1007/978-3-031-27181-6_1, XXI International Conference of the Italian Association for Artificial Intelligence, AIxIA 2022, Udine, Italy, 28 November - 2 December, Proceedings (2022)
Castillo, L.A., González Muñoz, A., Pérez, R.: Including a simplicity criterion in the selection of the best rule in a genetic fuzzy learning algorithm. Fuzzy Sets Syst. 120(2), 309–321 (2001). https://doi.org/10.1016/S0165-0114(99)00095-0
Ciatto, G., Calvaresi, D., Schumacher, M.I., Omicini, A.: An abstract framework for agent-based explanations in AI. In: El Fallah Seghrouchni, A., Sukthankar, G., An, B., Yorke-Smith, N. (eds.) 19th International Conference on Autonomous Agents and MultiAgent Systems, pp. 1816–1818. IFAAMAS (May 2020)
Craven, M.W., Shavlik, J.W.: Using sampling and queries to extract rules from trained neural networks. In: Machine Learning Proceedings 1994, pp. 37–45. Elsevier (1994). https://doi.org/10.1016/B978-1-55860-335-6.50013-1
Craven, M.W., Shavlik, J.W.: Extracting tree-structured representations of trained networks. In: Touretzky, D.S., Mozer, M.C., Hasselmo, M.E. (eds.) Advances in Neural Information Processing Systems 8, Proceedings of the 1995 Conference, pp. 24–30. The MIT Press (Jun 1996)
Forina, M., Leardi, R., Armanino, C., Lanteri, S., Conti, P., Princi, P.: Parvus: An extendable package of programs for data exploration, classification and correlation. J. Chemom. 4(2), 191–193 (1988)
Franco, L., Subirats, J.L., Molina, I., Alba, E., Jerez, J.M.: Early breast cancer prognosis prediction and rule extraction using a new constructive neural network algorithm. In: Sandoval, F., Prieto, A., Cabestany, J., Graña, M. (eds.) IWANN 2007. LNCS, vol. 4507, pp. 1004–1011. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73007-1_121
Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. ACM Comput. Surv. 51(5), 1–42 (2018). https://doi.org/10.1145/3236009
Hayashi, Y., Setiono, R., Yoshida, K.: A comparison between two neural network rule extraction techniques for the diagnosis of hepatobiliary disorders. Artif. Intell. Med. 20(3), 205–216 (2000). https://doi.org/10.1016/s0933-3657(00)00064-6
Hofmann, A., Schmitz, C., Sick, B.: Rule extraction from neural networks for intrusion detection in computer networks. In: 2003 IEEE International Conference on Systems, Man and Cybernetics, vol. 2, pp. 1259–1265. IEEE (2003). https://doi.org/10.1109/ICSMC.2003.1244584
Huysmans, J., Baesens, B., Vanthienen, J.: ITER: an algorithm for predictive regression rule extraction. In: Tjoa, A.M., Trujillo, J. (eds.) DaWaK 2006. LNCS, vol. 4081, pp. 270–279. Springer, Heidelberg (2006). https://doi.org/10.1007/11823728_26
Kenny, E.M., Ford, C., Quinn, M., Keane, M.T.: Explaining black-box classifiers using post-hoc explanations-by-example: the effect of explanations and error-rates in XAI user studies. Artif. Intell. 294, 103459 (2021). https://doi.org/10.1016/j.artint.2021.103459
König, R., Johansson, U., Niklasson, L.: G-REX: A versatile framework for evolutionary data mining. In: 2008 IEEE International Conference on Data Mining Workshops (ICDM 2008 Workshops), pp. 971–974 (2008). https://doi.org/10.1109/ICDMW.2008.117
Markowska-Kaczmar, U., Trelak, W.: Extraction of fuzzy rules from trained neural network using evolutionary algorithm. In: ESANN 2003, 11th European Symposium on Artificial Neural Networks, Bruges, Belgium, 23–25 April 2003, Proceedings, pp. 149–154 (2003). https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2003-9.pdf
Núñez, H., Angulo, C., Català, A.: Rule extraction based on support and prototype vectors. In: Diederich, J. (ed.) Rule Extraction from Support Vector Machines. SCI, vol. 80, pp. 109–134. Springer (2008). https://doi.org/10.1007/978-3-540-75390-2_5
Pedregosa, F., et al.: Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. (JMLR) 12, 2825–2830 (2011), https://dl.acm.org/doi/10.5555/1953048.2078195
Rocha, A., Papa, J.P., Meira, L.A.A.: How far do we get using machine learning black-boxes?. Int. J. Patt. Recogn. Artifi. Intell. 26(02), 1261001-(1–23) (2012). https://doi.org/10.1142/S0218001412610010
Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1(5), 206–215 (2019). https://doi.org/10.1038/s42256-019-0048-x
Sabbatini, F., Calegari, R.: Symbolic knowledge extraction from opaque machine learning predictors: GridREx & PEDRO. In: Kern-Isberner, G., Lakemeyer, G., Meyer, T. (eds.) Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning, KR 2022, Haifa, Israel, 31 July - 5 August (2022). https://doi.org/10.24963/kr.2022/57
Sabbatini, F., Ciatto, G., Calegari, R., Omicini, A.: On the design of PSyKE: a platform for symbolic knowledge extraction. In: Calegari, R., Ciatto, G., Denti, E., Omicini, A., Sartor, G. (eds.) WOA 2021–22nd Workshop “From Objects to Agents". CEUR Workshop Proceedings, vol. 2963, pp. 29–48, Bologna, Italy, 1–3 Sep, Proceedings, Sun SITE Central Europe, RWTH Aachen University (Oct 2021)
Sabbatini, F., Ciatto, G., Calegari, R., Omicini, A.: Hypercube-based methods for symbolic knowledge extraction: Towards a unified model. In: Ferrando, A., Mascardi, V. (eds.) WOA 2022–23rd Workshop “From Objects to Agents", CEUR Workshop Proceedings, vol. 3261, pp. 48–60. Sun SITE Central Europe, RWTH Aachen University (Nov 2022). http://ceur-ws.org/Vol-3261/paper4.pdf
Sabbatini, F., Ciatto, G., Calegari, R., Omicini, A.: Symbolic knowledge extraction from opaque ML predictors in PSyKE: Platform design & experiments. Intelligenza Artificiale 16(1), 27–48 (2022). https://doi.org/10.3233/IA-210120
Sabbatini, F., Ciatto, G., Omicini, A.: GridEx: an algorithm for knowledge extraction from black-box regressors. In: Calvaresi, D., Najjar, A., Winikoff, M., Främling, K. (eds.) EXTRAAMAS 2021. LNCS (LNAI), vol. 12688, pp. 18–38. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-82017-6_2
Sabbatini, F., Ciatto, G., Omicini, A.: Semantic Web-based interoperability for intelligent agents with PSyKE. In: Calvaresi, D., Najjar, A., Winikoff, M., Främling, K. (eds.) Explainable and Transparent AI and Multi-Agent Systems. LNCS, vol. 13283, chap. 8, pp. 124–142. Springer (2022). https://doi.org/10.1007/978-3-031-15565-9_8
Sabbatini, F., Grimani, C.: Symbolic knowledge extraction from opaque predictors applied to cosmic-ray data gathered with LISA Pathfinder. Aeronau. Aerospace Open Access J. 6(3), 90–95 (2022). https://doi.org/10.15406/aaoaj.2022.06.00145
Saito, K., Nakano, R.: Extracting regression rules from neural networks. Neural Netw. 15(10), 1279–1288 (2002). https://doi.org/10.1016/S0893-6080(02)00089-8
Schmitz, G.P.J., Aldrich, C., Gouws, F.S.: ANN-DT: an algorithm for extraction of decision trees from artificial neural networks. IEEE Trans. Neural Netw. 10(6), 1392–1401 (1999). https://doi.org/10.1109/72.809084
Setiono, R., Baesens, B., Mues, C.: Rule extraction from minimal neural networks for credit card screening. Int. J. Neural Syst. 21(04), 265–276 (2011). https://doi.org/10.1142/S0129065711002821
Setiono, R., Leow, W.K.: FERNN: an algorithm for fast extraction of rules from neural networks. Appl. Intell. 12(1–2), 15–25 (2000). https://doi.org/10.1023/A:1008307919726
Setiono, R., Leow, W.K., Zurada, J.M.: Extraction of rules from artificial neural networks for nonlinear regression. IEEE Trans. Neural Netw. 13(3), 564–577 (2002). https://doi.org/10.1109/TNN.2002.1000125
Setiono, R., Liu, H.: NeuroLinear: from neural networks to oblique decision rules. Neurocomputing 17(1), 1–24 (1997). https://doi.org/10.1016/S0925-2312(97)00038-6
Setiono, R., Thong, J.Y.L.: An approach to generate rules from neural networks for regression problems. Eur. J. Oper. Res. 155(1), 239–250 (2004). https://doi.org/10.1016/S0377-2217(02)00792-0
Steiner, M.T.A., Steiner Neto, P.J., Soma, N.Y., Shimizu, T., Nievola, J.C.: Using neural network rule extraction for credit-risk evaluation. Int. J. Comput. Sci. Netw. Sec. 6(5A), 6–16 (2006). http://paper.ijcsns.org/07_book/200605/200605A02.pdf
Thrun, S.B.: Extracting rules from artifical neural networks with distributed representations. In: Tesauro, G., Touretzky, D.S., Leen, T.K. (eds.) Advances in Neural Information Processing Systems 7, [NIPS Conference, Denver, Colorado, USA, 1994]. pp. 505–512. MIT Press (1994). http://papers.nips.cc/paper/924-extracting-rules-from-artificial-neural-networks-with-distributed-representations
Acknowledgments
This work has been supported by the EU ICT-48 2020 project TAILOR (No. 952215).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Sabbatini, F., Calegari, R. (2023). Bottom-Up and Top-Down Workflows for Hypercube- And Clustering-Based Knowledge Extractors. In: Calvaresi, D., et al. Explainable and Transparent AI and Multi-Agent Systems. EXTRAAMAS 2023. Lecture Notes in Computer Science(), vol 14127. Springer, Cham. https://doi.org/10.1007/978-3-031-40878-6_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-40878-6_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-40877-9
Online ISBN: 978-3-031-40878-6
eBook Packages: Computer ScienceComputer Science (R0)