Counterfactual, Contrastive, and Hierarchical Explanations with Contextual Importance and Utility | SpringerLink
Skip to main content

Counterfactual, Contrastive, and Hierarchical Explanations with Contextual Importance and Utility

  • Conference paper
  • First Online:
Explainable and Transparent AI and Multi-Agent Systems (EXTRAAMAS 2023)

Abstract

Contextual Importance and Utility (CIU) is a model-agnostic method for post-hoc explanation of prediction outcomes. In this paper we describe and show new functionality in the R implementation of CIU for tabular data. Much of that functionality is specific to CIU and goes beyond the current state of the art.

The work is partially supported by the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 6634
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 8293
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Främling, K.: Les réseaux de neurones comme outils d’aide à la décision floue. D.E.A. thesis, INSA de Lyon (1992)

    Google Scholar 

  2. Främling, K.: Explaining results of neural networks by contextual importance and utility. In: Andrews, R., Diederich, J. (eds.) Rules and networks: Proceedings of Rule Extraction from Trained Artificial Neural Networks Workshop, AISB’96 Conference. Brighton, UK (1–2 April 1996)

    Google Scholar 

  3. Främling, K.: Modélisation et apprentissage des préférences par réseaux de neurones pour l’aide à la décision multicritère. Phd thesis, INSA de Lyon (Mar 1996)

    Google Scholar 

  4. Främling, K.: Contextual Importance and Utility in R: the ‘CIU’ Package. In: Madumal, P., Tulli, S., Weber, R., Aha, D. (eds.) Proceedings of 1st Workshop on Explainable Agency in Artificial Intelligence Workshop, 35th AAAI Conference on Artificial Intelligence, pp. 110–114 (2021)

    Google Scholar 

  5. Främling, K.: Contextual importance and utility: a theoretical foundation. In: Long, G., Yu, X., Wang, S. (eds.) AI 2022. LNCS (LNAI), vol. 13151, pp. 117–128. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-97546-3_10

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kary Främling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Främling, K. (2023). Counterfactual, Contrastive, and Hierarchical Explanations with Contextual Importance and Utility. In: Calvaresi, D., et al. Explainable and Transparent AI and Multi-Agent Systems. EXTRAAMAS 2023. Lecture Notes in Computer Science(), vol 14127. Springer, Cham. https://doi.org/10.1007/978-3-031-40878-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40878-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40877-9

  • Online ISBN: 978-3-031-40878-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics