Abstract
Contextual Importance and Utility (CIU) is a model-agnostic method for post-hoc explanation of prediction outcomes. In this paper we describe and show new functionality in the R implementation of CIU for tabular data. Much of that functionality is specific to CIU and goes beyond the current state of the art.
The work is partially supported by the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Främling, K.: Les réseaux de neurones comme outils d’aide à la décision floue. D.E.A. thesis, INSA de Lyon (1992)
Främling, K.: Explaining results of neural networks by contextual importance and utility. In: Andrews, R., Diederich, J. (eds.) Rules and networks: Proceedings of Rule Extraction from Trained Artificial Neural Networks Workshop, AISB’96 Conference. Brighton, UK (1–2 April 1996)
Främling, K.: Modélisation et apprentissage des préférences par réseaux de neurones pour l’aide à la décision multicritère. Phd thesis, INSA de Lyon (Mar 1996)
Främling, K.: Contextual Importance and Utility in R: the ‘CIU’ Package. In: Madumal, P., Tulli, S., Weber, R., Aha, D. (eds.) Proceedings of 1st Workshop on Explainable Agency in Artificial Intelligence Workshop, 35th AAAI Conference on Artificial Intelligence, pp. 110–114 (2021)
Främling, K.: Contextual importance and utility: a theoretical foundation. In: Long, G., Yu, X., Wang, S. (eds.) AI 2022. LNCS (LNAI), vol. 13151, pp. 117–128. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-97546-3_10
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Främling, K. (2023). Counterfactual, Contrastive, and Hierarchical Explanations with Contextual Importance and Utility. In: Calvaresi, D., et al. Explainable and Transparent AI and Multi-Agent Systems. EXTRAAMAS 2023. Lecture Notes in Computer Science(), vol 14127. Springer, Cham. https://doi.org/10.1007/978-3-031-40878-6_16
Download citation
DOI: https://doi.org/10.1007/978-3-031-40878-6_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-40877-9
Online ISBN: 978-3-031-40878-6
eBook Packages: Computer ScienceComputer Science (R0)