Abstract
Recommender systems aim to support their users by reducing information overload so that they can make better decisions. Recommender systems must be transparent, so users can form mental models about the system’s goals, internal state, and capabilities, that are in line with their actual design. Explanations and transparent behaviour of the system should inspire trust and, ultimately, lead to more persuasive recommendations. Here, explanations convey reasons why a recommendation is given or how the system forms its recommendations. This paper focuses on the question how such claims about effectiveness of explanations can be evaluated. Accordingly, we investigate various models that are used to assess the effects of explanations and recommendations. We discuss objective and subjective measurement and argue that both are needed. We define a set of metrics for measuring the effectiveness of explanations and recommendations. The feasibility of using these metrics is discussed in the context of a specific explainable recommender system in the food and health domain.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17, 734–749 (2005)
Anjomshoae, S., Calvaresi, D., Najjar, A., Främling, K.: Explainable agents and robots: results from a systematic literature review. In: Autonomous Agents and Multi Agent Systems (AAMAS 2019), pp. 1078–1088 (2019)
Atkinson, K., Bench-Capon, T., McBurney, P.: Computational representation of practical argument. Synthese 152(2), 157–206 (2006)
Bernstein, E.: Making transparency transparent: the evolution of observation in management theory. Acad. Manag. Ann. 11(1), 217–266 (2017)
Burke, R., Felfernig, A., Göker, M.H.: Recommender systems: an overview. AI Mag. 32, 13–18 (2011)
Buzcu, B., Varadhajaran, V., Tchappi, I.H., Najjar, A., Calvaresi, D., Aydoğan, R.: Explanation-based negotiation protocol for nutrition virtual coaching. In: PRIMA 2022. LNCS, vol. 13753, pp. 20–36. Springer (2022). https://doi.org/10.1007/978-3-031-21203-1_2
Calvaresi, D.: Ethical and legal considerations for nutrition virtual coaches. In: AI and Ethics, pp. 1–28 (2022)
Davis, F.D.: Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 13(3), 319–340 (1989)
V. Dignum. Responsible Artificial Intelligence: How to Develop and Use AI in a Responsible Way. Springer (2019). https://doi.org/10.1007/978-3-030-30371-6
European Commission. Proposal for a Regulation of the European Parliament and of the Council laying down harmonised rules on Artificial Intelligence (Artificial Intelligence Act) and amending certain union legislative acts (2021)
Falcone, R., Castelfranchi, C.: Trust and relational capital. Comput. Math. Organ. Theory 17(2), 179–195 (2011)
Goodhue, D.L.: Understanding user evaluations of information systems. Manage. Sci. 41(12), 1827–1844 (1995)
Grice, H.P.: Logic and conversation. In: Cole, P., Morgan, J.L. (eds.) Syntax and Semantics, vol. 3, pp. 41–58. Academic Press, New York (1975)
HLEG. Ethics guidelines for trustworthy AI (2019)
Hoffman, R.R., Mueller, S.T., Klein, G., Litman, O.: Metrics for explainable ai: challenges and prospects. arXiv:1812.04608 [cs.AI] (2018)
Jannach, D., Pearl, P., Ricci, F., Zanker, M.: Recommender systems: past, present, future. AI Mag. 42, 3–6 (2021)
Kriz, S., Ferro, T.D., Damera, P., Porter, J.R.: Fictional Robots as a Data Source in HRI Research, pp. 458–463. IEEE (2010)
Lewicki, R.J., Bunker, B.B.: Developing and maintaining trust in work relationships. In: Trust in Organizations, pp. 114–139. Sage Publications (1996)
Lewis, D.: Causal explanation, pp. 214–240. Oxford University Press, Oxford (1986)
Lewis, J.R., Sauro, J.: Item benchmarks for the system usability scale. J. Usability Stud. 13(3), 158–167 (2018)
Lima, G., Grgić-Hlača, N., Jeong, J.K., Cha, M.: The conflict between explainable and accountable decision-making algorithms. In: FACCT, pp. 2103–2113. ACM, Seoul, Republic of Korea (2022)
Lyons, J.B.: Being transparent about transparency: A model for human-robot interaction, pp. 48–53. AAAI (2013)
Lyons, J.B., Havig, P.R.: Transparency in a human-machine context: approaches for fostering shared awareness/intent. In: Shumaker, R., Lackey, S. (eds.) VAMR 2014. LNCS, vol. 8525, pp. 181–190. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07458-0_18
Malle, B.F.: How people explain behavior: a new theoretical framework. Pers. Soc. Psychol. Rev. 3(1), 23–48 (1999)
Mayer, R.C., Davis, J.H., Schoorman, F.D.: An integrative model of organizational trust. Acad. Manag. Rev. 20(3), 709–734 (1995)
Miller, T.: Explanation in artificial intelligence: insights from the social sciences. Artif. Intell. 267, 1–38 (2019)
Miller, T., Hoffman, R., Amir, O., Holzinger, A.: Special issue on explainable artificial intelligence. Artif. Intell. 307, 103705 (2022)
Mualla, Y., et al.: The quest of parsimonious XAI: a human-agent architecture for explanation formulation. Artif. Intell. 302, 103573 (2022)
O’Leary, K., Wobbrock, J.O., Riskin, E.A.: Q-methodology as a research and design tool for HCI, pp. 1941–1950. ACM, Paris (2013)
Pavlou, P.A., Gefen, D.: Building effective online marketplaces with institution-based trust. Inf. Syst. Res. 15(1), 37–59 (2004)
Rosenfeld, A.: Better metrics for evaluating explainable artificial intelligence. In: AAMAS, pp. 45–50, Richland, SC (2021)
Smith, R.W., Hipp, D.R.: Spoken Language Dialog Systems: A Practical Approach. Oxford University Press, Oxford (1994)
Christina Soyoung Song and Youn-Kyung Kim: The role of the human-robot interaction in consumers’ acceptance of humanoid retail service robots. J. Bus. Res. 146, 489–503 (2022)
Tintarev, N., Masthoff, J.: Explaining recommendations: design and evaluation. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 353–382. Springer, Boston, MA (2015). https://doi.org/10.1007/978-1-4899-7637-6_10
Trang Tran, T.N., Atas, M., Felfernig, A., Stettinger, M.: An overview of recommender systems in the healthy food domain. J. Intell. Inform. Syst. 50(3), 501–526 (2018)
van der Waa, J., Nieuwburg, E., Cremers, A., Neerincx, M.: Evaluating XAI: A comparison of rule-based and example-based explanations. Artif. Intell. 291, 103404 (2023)
Venkatesh, V., Morris, M.G., Davis, G.B., Davis, F.D.: User acceptance of information technology: toward a unified view. MIS Q. 27(3), 425–478 (2003)
Vermaas, P.E., Tan, Y.-H., van den Hoven, J., Burgemeestre, B., Hulstijn, J.: Designing for trust: a case of value-sensitive design. Knowl. Technol. Policy 23(3–4), 491–505 (2010)
Vorm, E.S., Combs, D.J.Y.: Integrating transparency, trust, and acceptance: The intelligent systems technology model (ISTAM). Int. J. Hum.-Comput. Interact., 1–19 (2022)
Vorm, E.S., Miller, A.D.: Modeling user information needs to enable successful human-machine teams: designing transparency for autonomous systems. In: Schmorrow, D.D., Fidopiastis, C.M. (eds.) HCII 2020. LNCS (LNAI), vol. 12197, pp. 445–465. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50439-7_31
Wachter, S., Mittelstadt, B., Russell, C.: Counterfactual explanations without opening the black box: automated decisions and the GDPR. Harvard J. Law Technol. 31(2), 841–887 (2018)
Walker, M.A., Litman, D.J., Kamm, A., Abella, A.: PARADISE: A framework for evaluating spoken dialogue agents. In: Proceedings of the 35th Annual meeting of the ACL/EACL, pp. 271–280, Madrid (1997)
Wallkötter, S., Tulli, S., Castellano, G., Paiva, A., Chetouani, M.: Explainable embodied agents through social cues: a review. ACM Trans. Hum.-Robot Interact. 10(3), 27:2–27:24 (2021)
Acknowledgments
This work has been supported by CHIST-ERA grant CHIST-ERA19-XAI-005, and by (i) the Swiss National Science Foundation (G.A. 20CH21_195530), (ii) the Italian Ministry for Universities and Research, (iii) the Luxembourg National Research Fund (G.A. INTER/CHIST/19/14589586), (iv) the Scientific and Research Council of Turkey (TÜBİTAK, G.A. 120N680).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Hulstijn, J., Tchappi, I., Najjar, A., Aydoğan, R. (2023). Metrics for Evaluating Explainable Recommender Systems. In: Calvaresi, D., et al. Explainable and Transparent AI and Multi-Agent Systems. EXTRAAMAS 2023. Lecture Notes in Computer Science(), vol 14127. Springer, Cham. https://doi.org/10.1007/978-3-031-40878-6_12
Download citation
DOI: https://doi.org/10.1007/978-3-031-40878-6_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-40877-9
Online ISBN: 978-3-031-40878-6
eBook Packages: Computer ScienceComputer Science (R0)