Online TSP with Known Locations | SpringerLink
Skip to main content

Online TSP with Known Locations

  • Conference paper
  • First Online:
Algorithms and Data Structures (WADS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14079))

Included in the following conference series:

  • 1085 Accesses

Abstract

In this paper, we consider the Online Traveling Salesperson Problem (OLTSP) where the locations of the requests are known in advance, but not their arrival times. We study both the open variant, in which the algorithm is not required to return to the origin when all the requests are served, as well as the closed variant, in which the algorithm has to return to the origin after serving all the requests. Our aim is to measure the impact of the extra knowledge of the locations on the competitiveness of the problem. We present an online 3/2-competitive algorithm for the general case and a matching lower bound for both the open and the closed variant. Then, we focus on some interesting metric spaces (ring, star, semi-line), providing both lower bounds and polynomial time online algorithms for the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 13727
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 17159
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We note that our 3/2-competitive algorithm for general metric spaces also works for discrete metric spaces (where you do not continuously travel from one point to another, but travel in a discrete manner from point x at time t to point y at time \(t+d(x,y)\)).

  2. 2.

    Indeed, if \(OPT\) does not do this we can easily transform it into another optimal solution (with the same order of serving requests) that acts like this.

  3. 3.

    Strictly speaking, if \(x \ge L\), all requests and thus [0, x] would be released. We will ignore this and only use half-open intervals to avoid technicalities.

References

  1. Allulli, L., Ausiello, G., Laura, L.: On the power of lookahead in on-line vehicle routing problems. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 728–736. Springer, Heidelberg (2005). https://doi.org/10.1007/11533719_74

    Chapter  Google Scholar 

  2. Ascheuer, N., Grötschel, M., Krumke, S.O., Rambau, J.: Combinatorial online optimization. In: Kall, P., Lüthi, H.J. (eds.) Operations Research Proceedings 1998, pp. 21–37. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-642-58409-1_2

    Chapter  Google Scholar 

  3. Ausiello, G., Bonifaci, V., Laura, L.: The on-line asymmetric traveling salesman problem. J. Discrete Algorithms 6(2), 290–298 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ausiello, G., Demange, M., Laura, L., Paschos, V.T.: Algorithms for the on-line quota traveling salesman problem. Inf. Process. Lett. 92(2), 89–94 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ausiello, G., Feuerstein, E., Leonardi, S., Stougie, L., Talamo, M.: Algorithms for the on-line travelling salesman. Algorithmica 29, 560–581 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bampis, E., Escoffier, B., Hahn, N., Xefteris, M.: Online TSP with known locations. CoRR abs/2210.14722 (2022)

    Google Scholar 

  7. Bernardini, G., Lindermayr, A., Marchetti-Spaccamela, A., Megow, N., Stougie, L., Sweering, M.: A universal error measure for input predictions applied to online graph problems. In: Oh, A.H., Agarwal, A., Belgrave, D., Cho, K. (eds.) Advances in Neural Information Processing Systems (2022)

    Google Scholar 

  8. Bjelde, A., et al.: Tight bounds for online TSP on the line. ACM Trans. Algorithms 17(1), 3:1–3:58 (2021)

    Google Scholar 

  9. Blom, M., Krumke, S.O., de Paepe, W., Stougie, L.: The online TSP against fair adversaries. INFORMS J. Comput. 13(2), 138–148 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, P., Demaine, E.D., Liao, C., Wei, H.: Waiting is not easy but worth it: the online TSP on the line revisited. CoRR abs/1907.00317 (2019)

    Google Scholar 

  11. Gouleakis, T., Lakis, K., Shahkarami, G.: Learning-augmented algorithms for online TSP on the line. In: Proceedings of the 37th AAAI Conference on Artificial Intelligence (2023, to appear). CoRR abs/2206.00655

    Google Scholar 

  12. Hu, H., Wei, H., Li, M., Chung, K., Liao, C.: Online TSP with predictions. CoRR abs/2206.15364 (2022)

    Google Scholar 

  13. Jaillet, P., Wagner, M.: Online routing problems: value of advanced information as improved competitive ratios. Transp. Sci. 40, 200–210 (2006)

    Article  Google Scholar 

  14. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24777-7

    Book  MATH  Google Scholar 

  15. Lawler, E.L., Lenstra, J.K., Kan, A.H.G.R., Shmoys, D.B.: The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization. Wiley Series in Discrete Mathematics & Optimization (1991)

    Google Scholar 

  16. Psaraftis, H.N., Solomon, M.M., Magnanti, T.L., Kim, T.U.: Routing and scheduling on a shoreline with release times. Manage. Sci. 36(2), 212–223 (1990)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work was partially funded by the grant ANR-19-CE48-0016 from the French National Research Agency (ANR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Escoffier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bampis, E., Escoffier, B., Hahn, N., Xefteris, M. (2023). Online TSP with Known Locations. In: Morin, P., Suri, S. (eds) Algorithms and Data Structures. WADS 2023. Lecture Notes in Computer Science, vol 14079. Springer, Cham. https://doi.org/10.1007/978-3-031-38906-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38906-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38905-4

  • Online ISBN: 978-3-031-38906-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics