Comparative Study of Forecasting Techniques for Small Wind Turbine Power Generation by Meteorological Parameters | SpringerLink
Skip to main content

Comparative Study of Forecasting Techniques for Small Wind Turbine Power Generation by Meteorological Parameters

  • Conference paper
  • First Online:
Distributed Computing and Artificial Intelligence, Special Sessions II - Intelligent Systems Applications, 20th International Conference (DCAI 2023)

Abstract

Green energy generation is increasing its presence in individual and large-scale electrical networks, due to the need to reduce the emission of greenhouse gases. This study performs a comparative study between different regression models, linear and non-linear, with the objective of determining the best method for the prediction of the energy generated by a mini wind turbine based on meteorological variables. First, the best configuration for the chosen techniques will be obtained, and then the best models will be compared. These comparisons will be based on different metrics: Mean Squared Error, Root Mean Squared Error, Mean Absolute Error, Median Absolute Error and Coefficient of Determination; obtained through a 10-kfold cross-validation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sotavento web page. https://www.sotaventogalicia.com/area-tecnica/instalaciones-renovables/minieolica/ (2023). Accessed 10 Apr 2023

  2. Spanish power grid web page (2023). https://www.ree.es/es/datos/generacion/potencia-instalada. Accessed 10 Apr 2023

  3. Abdi, H., Williams, L.J.: Newman-Keuls test and Tukey test. Encyclopedia Res. Des. 2, 897–902 (2010). Accessed 13 Apr 2023

    Google Scholar 

  4. Athey, S., Tibshirani, J., Wager, S.: Generalized random forests. Ann. Stat. 47(2), 1148–1178 (2019). https://doi.org/10.1214/18-AOS1709

  5. Baruque, B., Porras, S., Jove, E., Calvo-Rolle, J.L.: Geothermal heat exchanger energy prediction based on time series and monitoring sensors optimization. Energy 171, 49–60 (2019)

    Article  Google Scholar 

  6. Bromley-Trujillo, R., Holman, M.R.: Climate change policymaking in the states: a view at 2020. Publius: J. Federal. 50(3), 446–472 (2020)

    Google Scholar 

  7. Commission, E.: European climate law. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32021R1119 (2023). Accessed 10 Apr 2023

  8. Czajkowski, M., Kretowski, M.: The role of decision tree representation in regression problems - an evolutionary perspective. Appl. Soft Comput. 48, 458–475 (2016). https://doi.org/10.1016/j.asoc.2016.07.007, https://www.sciencedirect.com/science/article/pii/S1568494616303325

  9. Fernandez-Jimenez, L.A., et al.: Short-term power forecasting system for photovoltaic plants. Renew. Energy 44, 311–317 (2012)

    Article  Google Scholar 

  10. Imandoust, S.B., Bolandraftar, M., et al.: Application of k-nearest neighbor (KNN) approach for predicting economic events: theoretical background. Int. J. Eng. Res. Appl. 3(5), 605–610 (2013)

    Google Scholar 

  11. Infield, D., Freris, L.: Renewable Energy in Power Systems. Wiley, Hoboken (2020)

    Google Scholar 

  12. Lorenz, E., Scheidsteger, T., Hurka, J., Heinemann, D., Kurz, C.: Regional PV power prediction for improved grid integration. Prog. Photovoltaics Res. Appl. 19(7), 757–771 (2011)

    Article  Google Scholar 

  13. Ostertagová, E., Ostertag, O., Kováč, J.: Methodology and application of the Kruskal-Wallis test. Appl. Mech. Mater. 611, 115–120 (2014)

    Article  Google Scholar 

  14. Ou, Y., et al.: Deep mitigation of co2 and non-co2 greenhouse gases toward 1.5\(^{\circ }\)c and 2\(^{\circ }\)c futures. Nature Commun. 12(6245), 1–9 (2021)

    Google Scholar 

  15. Porras, S., Jove, E., Baruque, B., Calvo-Rolle, J.L.: A comparative analysis of intelligent techniques to predict energy generated by a small wind turbine from atmospheric variables. Logic J. IGPL (2022). https://doi.org/10.1093/jigpal/jzac031, jzac031

  16. Pörtner, H.O., et al.: Climate change 2022: Impacts, adaptation and vulnerability. IPCC Geneva, Switzerland (2022)

    Google Scholar 

  17. Rayati, M., Goghari, S.A., Gheidari, Z.N., Ranjbar, A.: An optimal and decentralized transactive energy system for electrical grids with high penetration of renewable energy sources. Int. J. Electrical Power Energy Syst. 113, 850–860 (2019)

    Article  Google Scholar 

  18. Saleh, A.E., Moustafa, M.S., Abo-Al-Ez, K.M., Abdullah, A.A.: A hybrid neuro-fuzzy power prediction system for wind energy generation. Int. J. Electr. Power Energy Syst. 74, 384–395 (2016)

    Article  Google Scholar 

  19. Zayas-Gato, F., et al.: Intelligent model for active power prediction of a small wind turbine. Logic J. IGPL (2022). https://doi.org/10.1093/jigpal/jzac040, jzac040

  20. Zayas-Gato, F., et al.: A novel method for anomaly detection using beta Hebbian learning and principal component analysis. Logic J. IGPL 31(2), 390–399 (2022). https://doi.org/10.1093/jigpal/jzac026

Download references

Acknowledgements

Míriam Timiraos’s research was supported by the “Xunta de Galicia” (Regional Government of Galicia) through grants to industrial PhD (http://gain.xunta.gal/), under the “Doutoramento Industrial 2022” grant with reference: 04_IN606D_2022_ 2692965.

Álvaro Michelena’s research was supported by the Spanish Ministry of Universities (https://www.universidades.gob.es/), under the “Formación de Profesorado Universitario” grant with reference: FPU21/00932.

CITIC, as a Research Center of the University System of Galicia, is funded by Consellería de Educación, Universidade e Formación Profesional of the Xunta de Galicia through the European Regional Development Fund (ERDF) and the Secretaría Xeral de Universidades (Ref. ED431G 2019/01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Díaz-Longueira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Díaz-Longueira, A. et al. (2023). Comparative Study of Forecasting Techniques for Small Wind Turbine Power Generation by Meteorological Parameters. In: Jove, E., Zayas-Gato, F., Michelena, Á., Calvo-Rolle, J.L. (eds) Distributed Computing and Artificial Intelligence, Special Sessions II - Intelligent Systems Applications, 20th International Conference. DCAI 2023. Lecture Notes in Networks and Systems, vol 742. Springer, Cham. https://doi.org/10.1007/978-3-031-38616-9_7

Download citation

Publish with us

Policies and ethics