Weak Instances of Class Group Action Based Cryptography via Self-pairings | SpringerLink
Skip to main content

Weak Instances of Class Group Action Based Cryptography via Self-pairings

  • Conference paper
  • First Online:
Advances in Cryptology – CRYPTO 2023 (CRYPTO 2023)

Abstract

In this paper we study non-trivial self-pairings with cyclic domains that are compatible with isogenies between elliptic curves oriented by an imaginary quadratic order \(\mathcal {O}\). We prove that the order m of such a self-pairing necessarily satisfies \(m \mid \varDelta _\mathcal {O}\) (and even \(2m \mid \varDelta _\mathcal {O}\) if \(4 \mid \varDelta _\mathcal {O}\) and \(4m \mid \varDelta _\mathcal {O}\) if \(8 \mid \varDelta _\mathcal {O}\)) and is not a multiple of the field characteristic. Conversely, for each m satisfying these necessary conditions, we construct a family of non-trivial cyclic self-pairings of order m that are compatible with oriented isogenies, based on generalized Weil and Tate pairings.

As an application, we identify weak instances of class group actions on elliptic curves assuming the degree of the secret isogeny is known. More in detail, we show that if \(m^2 \mid \varDelta _\mathcal {O}\) for some prime power m then given two primitively \(\mathcal {O}\)-oriented elliptic curves \((E, \iota )\) and \((E',\iota ') = [\mathfrak {a}](E,\iota )\) connected by an unknown invertible ideal \(\mathfrak {a}\subseteq \mathcal {O}\), we can recover \(\mathfrak {a}\) essentially at the cost of a discrete logarithm computation in a group of order \(m^2\), assuming the norm of \(\mathfrak {a}\) is given and is smaller than \(m^2\). We give concrete instances, involving ordinary elliptic curves over finite fields, where this turns into a polynomial time attack.

Finally, we show that these self-pairings simplify known results on the decisional Diffie–Hellman problem for class group actions on oriented elliptic curves.

This work was supported in part by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement ISOCRYPT - No. 101020788) and by CyberSecurity Research Flanders with reference number VR20192203.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It may seem suspicious, at first sight, that \(f_{m,P}(D_Q)\) does not depend on \(\psi \). However, here too, the Frey–Rück \(\psi \)-Tate pairing is just a restriction of the Frey–Rück m-Tate pairing.

  2. 2.

    For instance, to allow for \(\sigma \) of the form \((\pi _q - 1)/b\) as in Example 5.2.

  3. 3.

    The reduction was presented at the KU Leuven isogeny days in 2022 and an article about this is in preparation [17].

  4. 4.

    See https://github.com/KULeuven-COSIC/Weak-Class-Group-Actions for the code.

  5. 5.

    If \({{\,\textrm{char}\,}}(k) = 2\) then it seems like we may be missing more than one assigned character, but see [7, Footnote 1] for why this is not the case.

References

  1. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system I: the user language. J. Symb. Comput. 24(3–4), 235–265 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bruin, P.: The Tate pairing for Abelian varieties over finite fields. Journal de Théorie des Nombres de Bordeaux 23(2), 323–328 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Castryck, W., Decru, T.: CSIDH on the surface. In: Ding, J., Tillich, J.-P. (eds.) PQCrypto 2020. LNCS, vol. 12100, pp. 111–129. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44223-1_7

    Chapter  Google Scholar 

  4. Castryck, W., Decru, T.: An efficient key recovery attack on SIDH. In: Hazay, C., Stam, M. (eds.) Eurocrypt 2023 Part 5. LNCS, vol. 14008, pp. 423–447. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30589-4_15

  5. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018 Part 3. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03332-3_15

  6. Castryck, W., Sotáková, J., Vercauteren, F.: Breaking the decisional Diffie-Hellman problem for class group actions using Genus theory. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020 Part 2. LNCS, vol. 12171, pp. 92–120. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_4

  7. Castryck, W., Houben, M., Vercauteren, F., Wesolowski, B.: On the decisional Diffie-Hellman problem for class group actions on oriented elliptic curves. Res. Number Theory 8(4), 99 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  8. Castryck, W., Houben, M., Merz, S.-P., Mula, M., van Buuren, S., Vercauteren, F.: Weak instances of class group action based cryptography via self-pairings (2023). Full version on ePrint Archive available at https://eprint.iacr.org/2023/549

  9. Cervantes-Vázquez, D., Chenu, M., Chi-Domínguez, J.-J., De Feo, L., Rodríguez-Henríquez, F., Smith, B.: Stronger and faster side-channel protections for CSIDH. In: Schwabe, P., Thériault, N. (eds.) LATINCRYPT 2019. LNCS, vol. 11774, pp. 173–193. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30530-7_9

    Chapter  Google Scholar 

  10. Chávez-Saab, J., Chi-Domínguez, J.-J., Jaques, S., Rodríguez-Henríquez, F.: The SQALE of CSIDH: sublinear Vélu quantum-resistant isogeny action with low exponents. J. Cryptogr. Eng. 12(3), 349–368 (2022)

    Article  Google Scholar 

  11. Chenu, M., Smith, B.: Higher-degree supersingular group actions. Math. Cryptol. 1(2), 85–101 (2021)

    Google Scholar 

  12. Colò, L., Kohel, D.: Orienting supersingular isogeny graphs. J. Math. Cryptol. 14(1), 414–437 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  13. Couveignes, J.-M.: Hard homogeneous spaces (2006). Unpublished article. https://eprint.iacr.org/2006/291

  14. Cox, D.A.: Primes of the Form \(x^2+ny^2\): Fermat, Class Field Theory, and Complex Multiplication, vol. 116. Pure and Applied Mathematics, 2nd edn. Wiley (2013)

    Google Scholar 

  15. Dartois, P., De Feo, L.: On the security of OSIDH. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.) PKC 2022 Part 1. LNCS, vol. 13177, pp. 52–81. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-97121-2_3

  16. De Feo, L., et al.: SCALLOP: scaling the CSI-FiSh. In: Boldyreva, A., Kolesnikov, V. (eds.) PKC 2023 Part 1. LNCS, vol. 13940, pp. 345–375. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-31368-4_13

  17. De Feo, L., et al.: Modular isogeny problems. Private communication

    Google Scholar 

  18. Frey, G., Rück, H.-G.: A remark concerning \(m\)-divisibility and the discrete logarithm in class groups of curves. Math. Comput. 62, 865–874 (1994)

    MathSciNet  MATH  Google Scholar 

  19. Galbraith, S.: Pairings. In: Blake, I.F., Seroussi, G., Smart, N.P. (eds.) Advances in Elliptic Curve Cryptography. LMS Lecture Note Series, Chapter 9, vol. 317, pp. 183–213. Cambridge University Press (2005)

    Google Scholar 

  20. Garefalakis, T.: The generalized Weil pairing and the discrete logarithm problem on elliptic curves. In: Rajsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286, pp. 118–130. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45995-2_15

    Chapter  Google Scholar 

  21. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5_2

    Chapter  MATH  Google Scholar 

  22. Lenstra, H.W.: Complex multiplication structure of elliptic curves. J. Number Theory 56, 227–241 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Maino, L., Martindale, C., Panny, L., Pope, G., Wesolowski, B.: A direct key recovery attack on SIDH. In: Eurocrypt 2023 Part 5. LNCS, vol. 14008, pp. 448–471. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30589-4_16

  24. Miller, V.S.: Short programs for functions on curves (1986). Unpublished note https://crypto.stanford.edu/miller/miller.pdf

  25. Miller, V.S.: The Weil pairing, and its efficient calculation. J. Cryptol. 17(4), 235–261 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Moriya, Tomoki, Onuki, Hiroshi, Takagi, Tsuyoshi: SiGamal: a supersingular isogeny-based PKE and its application to a PRF. In: Moriai, Shiho, Wang, Huaxiong (eds.) ASIACRYPT 2020 Part 2. LNCS, vol. 12492, pp. 551–580. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_19

  27. Onuki, H.: On oriented supersingular elliptic curves. Finite Fields Appl. 69, Article id 101777 (2021)

    Google Scholar 

  28. Robert, D.: Efficient algorithms for Abelian varieties and their moduli spaces. Habilitation à Diriger des Recherches (2021)

    Google Scholar 

  29. Robert, D.: Some applications of higher dimensional isogenies to elliptic curves (overview of results) (2022). Preprint https://eprint.iacr.org/2022/1704

  30. Robert, D.: The geometric interpretation of the Tate pairing and its applications (2023). Preprint https://eprint.iacr.org/2023/177

  31. Robert, D.: Breaking SIDH in polynomial time. In: Hazay, C., Stam, M. (eds.) Eurocrypt 2023 Part 5. LNCS, vol. 14008, pp. 472–503. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30589-4_17

  32. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies (2006). Unpublished article https://eprint.iacr.org/2006/145

  33. Satoh, T., Araki, K.: Fermat quotients and the polynomial time discrete log algorithm for anomalous elliptic curves. Commentarii Mathematici Universitatis Sancti Pauli 47, 81–92 (1998)

    MathSciNet  MATH  Google Scholar 

  34. Schoof, R.: Elliptic curves over finite fields and the computation of square roots mod \(p\). Math. Comput. 44(170), 483–494 (1985)

    MathSciNet  MATH  Google Scholar 

  35. Schoof, R.: Nonsingular plane cubic curves over finite fields. J. Comb. Theory Ser. A 36(2), 183–211 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  36. Silverman, J.H.: The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, vol. 106, 2nd edn. Springer, Cham (2009). https://doi.org/10.1007/978-0-387-09494-6

  37. Smart, N.P.: The discrete logarithm problem on elliptic curves of trace one. J. Cryptol. 12, 193–196 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  38. Waterhouse, W.C.: Abelian varieties over finite fields. Annales scientifiques de l’École Normale Supérieure 2, 521–560 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wesolowski, B.: The supersingular isogeny path and endomorphism ring problems are equivalent. In: FOCS 2021, pp. 1100–1111. IEEE (2022)

    Google Scholar 

Download references

Acknowledgements

We owe thanks to Luca De Feo, Damien Robert, Katherine Stange and the anonymous reviewers for various helpful comments, discussions and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wouter Castryck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Castryck, W., Houben, M., Merz, SP., Mula, M., Buuren, S.v., Vercauteren, F. (2023). Weak Instances of Class Group Action Based Cryptography via Self-pairings. In: Handschuh, H., Lysyanskaya, A. (eds) Advances in Cryptology – CRYPTO 2023. CRYPTO 2023. Lecture Notes in Computer Science, vol 14083. Springer, Cham. https://doi.org/10.1007/978-3-031-38548-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38548-3_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38547-6

  • Online ISBN: 978-3-031-38548-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics