Expressiveness and Structure Preservation in Learning Port-Hamiltonian Systems | SpringerLink
Skip to main content

Expressiveness and Structure Preservation in Learning Port-Hamiltonian Systems

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14072))

Included in the following conference series:

Abstract

A well-specified parametrization for single-input/single-output (SISO) linear port-Hamiltonian systems amenable to structure-preserving supervised learning is provided. The construction is based on controllable and observable normal form Hamiltonian representations for those systems, which reveal fundamental relationships between classical notions in control theory and crucial properties in the machine learning context, like structure-preservation and expressive power. The results in the paper suggest parametrizations of the estimation problem associated with these systems that amount, at least in the canonical case, to unique identification and prove that the parameter complexity necessary for the replication of the dynamics is only \(\mathcal {O}(n)\) and not \(\mathcal {O}(n^2)\), as suggested by the standard parametrization of these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10295
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12869
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gonzalez, O.: Time integration and discrete Hamiltonian systems. In: Mechanics: From Theory to Computation. Springer, New York, NY (2000). https://doi.org/10.1007/978-1-4612-1246-1_10

  2. Grigoryeva, L., Ortega, J.P.: Dimension reduction in recurrent networks by canonicalization. J. Geom. Mech. 13(4), 647–677 (2021). https://doi.org/10.3934/jgm.2021028

    Article  MathSciNet  MATH  Google Scholar 

  3. Kalman, R.E.: Mathematical description of linear dynamical systems. J. Soc. Indus. Appl. Math. Ser. A Control. 1(2), 152–192 (1963). https://doi.org/10.1137/0301010

  4. Karniadakis, G.E., Kevrekidis, I.G., Lu, L., Perdikaris, P., Wang, S., Yang, L.: Physics-informed machine learning. Nat. Rev. Phys. 3(6), 422–440 (2021)

    Article  Google Scholar 

  5. Leimkuhler, B., Reich, S.: Simulating Hamiltonian Dynamics. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  6. Marsden, J.E., West, M.: Discrete mechanics and variational integrators. Acta Numer. 10, 357–514 (2001). https://doi.org/10.1017/S096249290100006X

    Article  MathSciNet  MATH  Google Scholar 

  7. McLachlan, R.I., Quispel, G.R.W.: Geometric integrators for ODEs. J. Phys. A Math. Gener. 39(19), 5251 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Medianu, S., Lefevre, L., Stefanoiu, D.: Identifiability of linear lossless Port-controlled Hamiltonian systems. In: 2nd International Conference on Systems and Computer Science, pp. 56–61 (2013). https://doi.org/10.1109/IcConSCS.2013.6632023

  9. Ortega, J.P., Yin, D.: Learnability of linear port-Hamiltonian systems. arXiv preprint arXiv:2303.15779 (2023)

  10. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics informed deep learning (part i): Data-driven solutions of nonlinear partial differential equations. arXiv preprint arXiv:1711.10561 (2017)

  11. van der Schaft, A., Jeltsema, D.: Port-Hamiltonian systems theory: an introductory overview, vol. 1 (2014).https://doi.org/10.1561/2600000002

  12. Sontag, E.: Mathematical Control Theory: Deterministic Finite Dimensional Systems. Springer-Verlag, Heidelberg (1998). https://doi.org/10.1007/978-3-540-69532-5_16

  13. Williamson, J.: On the algebraic problem concerning the normal forms of linear dynamical systems. Am. J. Math. 58(1), 141–163 (1936)

    Article  MathSciNet  MATH  Google Scholar 

  14. Wu, J.L., Xiao, H., Paterson, E.: Physics-informed machine learning approach for augmenting turbulence models: a comprehensive framework. Phys. Rev. Fluids 3(7), 74602 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Lyudmila Grigoryeva for helpful discussions and remarks and acknowledge partial financial support from the Swiss National Science Foundation (grant number 175801/1) and the School of Physical and Mathematical Sciences of the Nanyang Technological University. DY is funded by the Nanyang President’s Graduate Scholarship of Nanyang Technological University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daiying Yin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ortega, JP., Yin, D. (2023). Expressiveness and Structure Preservation in Learning Port-Hamiltonian Systems. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2023. Lecture Notes in Computer Science, vol 14072. Springer, Cham. https://doi.org/10.1007/978-3-031-38299-4_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38299-4_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38298-7

  • Online ISBN: 978-3-031-38299-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics