The Gaussian Kernel on the Circle and Spaces that Admit Isometric Embeddings of the Circle | SpringerLink
Skip to main content

The Gaussian Kernel on the Circle and Spaces that Admit Isometric Embeddings of the Circle

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14071))

Included in the following conference series:

Abstract

On Euclidean spaces, the Gaussian kernel is one of the most widely used kernels in applications. It has also been used on non-Euclidean spaces, where it is known that there may be (and often are) scale parameters for which it is not positive definite. Hope remains that this kernel is positive definite for many choices of parameter. However, we show that the Gaussian kernel is not positive definite on the circle for any choice of parameter. This implies that on metric spaces in which the circle can be isometrically embedded, such as spheres, projective spaces and Grassmannians, the Gaussian kernel is not positive definite for any parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9380
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11725
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barachant, A., Bonnet, S., Congedo, M., Jutten, C.: Riemannian geometry applied to BCI classification. In: Vigneron, V., Zarzoso, V., Moreau, E., Gribonval, R., Vincent, E. (eds.) LVA/ICA 2010. LNCS, vol. 6365, pp. 629–636. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15995-4_78

    Chapter  Google Scholar 

  2. Berg, C., Christensen, J.P.R., Ressel, P.: Harmonic Analysis on Semigroups, Graduate Texts in Mathematics, vol. 100. Springer, New York (1984). https://doi.org/10.1007/978-1-4612-1128-0

  3. Borovitskiy, V., Terenin, A., Mostowsky, P., Deisenroth, M.: Matérn Gaussian processes on Riemannian manifolds. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 12426–12437. Curran Associates, Inc. (2020)

    Google Scholar 

  4. Bringmann, K., Folsom, A., Milas, A.: Asymptotic behavior of partial and false theta functions arising from Jacobi forms and regularized characters. J. Math. Phys. 58(1), 011702 (2017). https://doi.org/10.1063/1.4973634

    Article  MathSciNet  MATH  Google Scholar 

  5. Calinon, S.: Gaussians on Riemannian manifolds: applications for robot learning and adaptive control. IEEE Rob. Autom. Maga. 27(2), 33–45 (2020). https://doi.org/10.1109/MRA.2020.2980548

    Article  Google Scholar 

  6. Carneiro, E., Littmann, F.: Bandlimited approximations to the truncated Gaussian and applications. Constr. Approx. 38(1), 19–57 (2013). https://doi.org/10.1007/s00365-012-9177-8

    Article  MathSciNet  MATH  Google Scholar 

  7. Cristianini, N., Ricci, E.: Support Vector Machines, pp. 2170–2174. Springer, New York (2016). https://doi.org/10.1007/978-0-387-77242-4

  8. Feragen, A., Hauberg, S.: Open problem: kernel methods on manifolds and metric spaces. What is the probability of a positive definite geodesic exponential kernel? In: Feldman, V., Rakhlin, A., Shamir, O. (eds.) 29th Annual Conference on Learning Theory. Proceedings of Machine Learning Research, vol. 49, pp. 1647–1650. PMLR, Columbia University (2016). https://proceedings.mlr.press/v49/feragen16.html

  9. Feragen, A., Lauze, F., Hauberg, S.: Geodesic exponential kernels: when curvature and linearity conflict. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3032–3042 (2015). https://doi.org/10.1109/CVPR.2015.7298922

  10. Gneiting, T.: Strictly and non-strictly positive definite functions on spheres. Bernoulli 19(4), 1327–1349 (2013). https://doi.org/10.3150/12-BEJSP06

  11. Gonon, L., Grigoryeva, L., Ortega, J.P.: Reservoir kernels and Volterra series. ArXiv Preprint (2022)

    Google Scholar 

  12. Grigoryeva, L., Ortega, J.P.: Dimension reduction in recurrent networks by canonicalization. J. Geom. Mech. 13(4), 647–677 (2021). https://doi.org/10.3934/jgm.2021028

    Article  MathSciNet  MATH  Google Scholar 

  13. Jaquier, N., Rozo, L.D., Calinon, S., Bürger, M.: Bayesian optimization meets Riemannian manifolds in robot learning. In: Kaelbling, L.P., Kragic, D., Sugiura, K. (eds.) 3rd Annual Conference on Robot Learning, CoRL 2019, Osaka, Japan, 30 October–1 November 2019, Proceedings. Proceedings of Machine Learning Research, vol. 100, pp. 233–246. PMLR (2019). http://proceedings.mlr.press/v100/jaquier20a.html

  14. Jayasumana, S., Hartley, R., Salzmann, M., Li, H., Harandi, M.: Kernel methods on Riemannian manifolds with Gaussian RBF kernels. IEEE Trans. Pattern Anal. Mach. Intell. 37(12), 2464–2477 (2015). https://doi.org/10.1109/TPAMI.2015.2414422

    Article  Google Scholar 

  15. Romeny, B.M.H.: Geometry-Driven Diffusion in Computer Vision. Springer, Heidelberg (2013). google-Books-ID: Fr2rCAAAQBAJ

    Google Scholar 

  16. Salvi, C., Cass, T., Foster, J., Lyons, T., Yang, W.: The Signature Kernel is the solution of a Goursat PDE. SIAM J. Math. Data Sci. 3(3), 873–899 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  17. Schoenberg, I.J.: Metric spaces and positive definite functions. Trans. Am. Math. Soc. 44(3), 522–536 (1938). http://www.jstor.org/stable/1989894

  18. Schölkopf, B., Smola, A., Müller, K.R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10(5), 1299–1319 (1998). https://doi.org/10.1162/089976698300017467

    Article  Google Scholar 

  19. Sra, S.: Positive definite matrices and the S-divergence. Proc. Am. Math. Soc. 144(7), 2787–2797 (2016). https://www.jstor.org/stable/procamermathsoci.144.7.2787

  20. Wood, A.T.A.: When is a truncated covariance function on the line a covariance function on the circle? Stat. Prob. Lett. 24(2), 157–164 (1995). https://doi.org/10.1016/0167-7152(94)00162-2

    Article  MathSciNet  MATH  Google Scholar 

  21. Ye, K., Lim, L.H.: Schubert varieties and distances between subspaces of different dimensions. SIAM J. Matrix Anal. Appl. 37(3), 1176–1197 (2016). https://doi.org/10.1137/15M1054201

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhu, P., Knyazev, A.: Angles between subspaces and their tangents. J. Numer. Math. 21(4), 325–340 (2013). https://doi.org/10.1515/jnum-2013-0013

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the School of Physical and Mathematical Sciences and the Presidential Postdoctoral Fellowship programme at Nanyang Technological University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyrus Mostajeran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Da Costa, N., Mostajeran, C., Ortega, JP. (2023). The Gaussian Kernel on the Circle and Spaces that Admit Isometric Embeddings of the Circle. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2023. Lecture Notes in Computer Science, vol 14071. Springer, Cham. https://doi.org/10.1007/978-3-031-38271-0_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38271-0_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38270-3

  • Online ISBN: 978-3-031-38271-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics