Abstract
In this paper, we show how to use the Matrix Code Equivalence (MCE) problem as a new basis to construct signature schemes. This extends previous work on using isomorphism problems for signature schemes, a trend that has recently emerged in post-quantum cryptography. Our new formulation leverages a more general problem and allows for smaller data sizes, achieving competitive performance and great flexibility. Using MCE, we construct a zero-knowledge protocol which we turn into a signature scheme named Matrix Equivalence Digital Signature (MEDS). We provide an initial choice of parameters for MEDS, tailored to NIST’s Category 1 security level, yielding public keys as small as 2.8 kB and signatures ranging from 18 kB to just around 6.5 kB, along with a reference implementation in C.
An extended and correctly typeset version of this paper can be found at https://eprint.iacr.org/2022/1559.
Tung Chou is supported by Taiwan National Science and Technology Council (NSTC, previously Ministry of Science and Technology) grant 109-2222-E-001-001-MY3. Edoardo Persichetti is supported by NSF grant 1906360 and NSA grant H98230-22-1-0328. Monika Trimoska is supported by the ERC Starting Grant 805031 (EPOQUE).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
- 2.
More accurately, as the action of an isometry (A, B) is only interesting up to scalars \(\lambda , \mu \in \mathbb {F}_q\), the group that is acting freely is \({\text {PGL}}_m(q) \times {\text {PGL}}_n(q)\).
- 3.
Again, for convenience, we choose \(\textbf{A}_{0}=\textbf{I}_m\), \(\textbf{B}_{0}=\textbf{I}_n\).
- 4.
https://bench.cr.yp.to/results-sign.html – amd64; Zen (800f11); 2017 AMD Ryzen 7 1700; 8 \(\times \) 3000 MHz; rumba7, supercop-20220506.
References
Aguilar Melchor, C., et al.: HQC. NIST PQC Submission (2020)
Aguilar-Melchor, C., Gama, N., Howe, J., Hülsing, A., Joseph, D., Yue, D.: The return of the SDitH. Cryptology ePrint Archive, Paper 2022/1645 (2022, to appear at Eurocrypt 2023)
Alamati, N., De Feo, L., Montgomery, H., Patranabis, S.: Cryptographic group actions and applications. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 411–439. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_14
Albrecht, M.R., et al.: Classic McEliece. NIST PQC Submission (2020)
Aragon, N., et al.: BIKE. NIST PQC Submission (2020)
Banegas, G., Debris-Alazard, T., Nedeljković, M., Smith, B.: Wavelet: code-based postquantum signatures with fast verification on microcontrollers. Cryptology ePrint Archive, Paper 2021/1432 (2021)
Bardet, M., et al.: Improvements of algebraic attacks for solving the rank decoding and MinRank problems. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 507–536. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64837-4_17
Barenghi, A., Biasse, J.-F., Persichetti, E., Santini, P.: LESS-FM: fine-tuning signatures from the code equivalence problem. In: Cheon, J.H., Tillich, J.-P. (eds.) PQCrypto 2021 2021. LNCS, vol. 12841, pp. 23–43. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81293-5_2
Barenghi, A., Biasse, J.-F., Ngo, T., Persichetti, E., Santini, P.: Advanced signature functionalities from the code equivalence problem. Int. J. Comput. Math. Comput. Syst. Theory 7(2), 112–128 (2022)
Beullens, W.: Not enough LESS: an improved algorithm for solving code equivalence problems over \(\mathbb{F}_q\). In: Dunkelman, O., Jacobson, Jr., M.J., O’Flynn, C. (eds.) SAC 2020. LNCS, vol. 12804, pp. 387–403. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81652-0_15
Beullens, W., et al.: Oil and vinegar: modern parameters and implementations. Cryptology ePrint Archive, Paper 2023/059 (2023)
Beullens, W., Katsumata, S., Pintore, F.: Calamari and Falafl: logarithmic (linkable) ring signatures from isogenies and lattices. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 464–492. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_16
Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: efficient isogeny based signatures through class group computations. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 227–247. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-5_9
Biasse, J.-F., Micheli, G., Persichetti, E., Santini, P.: LESS is more: code-based signatures without syndromes. In: Nitaj, A., Youssef, A. (eds.) AFRICACRYPT 2020. LNCS, vol. 12174, pp. 45–65. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51938-4_3
Bonnetain, X., Schrottenloher, A.: Quantum security analysis of CSIDH. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 493–522. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_17
Bouillaguet, C.: Algorithms for some hard problems and cryptographic attacks against specific cryptographic primitives. Ph.D. thesis, Université Paris Diderot (2011)
Bouillaguet, C., Fouque, P.-A., Véber, A.: Graph-theoretic algorithms for the “isomorphism of polynomials’’ problem. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 211–227. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_13
Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03332-3_15
Courtois, N.T.: Efficient zero-knowledge authentication based on a linear algebra problem MinRank. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 402–421. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_24
Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solving overdefined systems of multivariate polynomial equations. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_27
Couveignes, J.-M.: Hard homogeneous spaces. Cryptology ePrint Archive, Paper 2006/291 (2006)
Couvreur, A., Debris-Alazard, T., Gaborit, P.: On the hardness of code equivalence problems in rank metric. CoRR, abs/2011.04611 (2020)
De Feo, L., Galbraith, S.D.: SeaSign: compact isogeny signatures from class group actions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 759–789. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4_26
Ding, J., et al.: Rainbow. Technical report, National Institute of Standards and Technology (2020)
Faugère, J.-C., Din, M.S.E., Spaenlehauer, P.-J.: Gröbner bases of bihomogeneous ideals generated by polynomials of bidegree (1, 1): algorithms and complexity. J. Symb. Comput. 46(4), 406–437 (2011)
Faugère, J.-C., Levy-dit-Vehel, F., Perret, L.: Cryptanalysis of MinRank. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 280–296. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_16
Faugère, J.-C., Perret, L.: Polynomial equivalence problems: algorithmic and theoretical aspects. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 30–47. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_3
Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12
Gueron, S., Persichetti, E., Santini, P.: Designing a practical code-based signature scheme from zero-knowledge proofs with trusted setup. Cryptography 6(1), 5 (2022)
Haviv, I., Regev, O.: On the lattice isomorphism problem. In: Chekuri, C. (ed.) SODA 2014, pp. 391–404. ACM SIAM (2014)
Hulsing, A., et al.: SPHINCS+. NIST PQC Submission (2020)
Kipnis, A., Shamir, A.: Cryptanalysis of the HFE public key cryptosystem by relinearization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 19–30. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_2
Kuperberg, G.: Another subexponential-time quantum algorithm for the dihedral hidden subgroup problem. In: Severini, S., Brandão, F.G.S.L. (eds.) TQC 2013. LIPIcs, vol. 22, pp. 20–34. Schloss Dagstuhl (2013)
Leon, J.S.: Computing automorphism groups of error-correcting codes. IEEE Trans. Inf. Theory 28(3), 496–510 (1982)
Lyubashevsky, V., et al.: CRYSTALS. NIST PQC Submission (2020)
McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. DSN PR 42-44, California Institute of Technology (1978)
Nguyen, P., Wolf, C.: International workshop on post-quantum cryptography (2006)
NIST. Post-Quantum Cryptography Standardization (2017). https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
Patarin, J.: Hidden fields equations (HFE) and isomorphisms of polynomials (IP): two new families of asymmetric algorithms. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9_4
Perlner, R., Smith-Tone, D.: Rainbow band separation is better than we thought. Cryptology ePrint Archive, Paper 2020/702 (2020)
Prange, E.: The use of information sets in decoding cyclic codes. IRE Trans. Inf. Theory 8(5), 5–9 (1962)
Prest, T., et al.: FALCON. NIST PQC Submission (2020)
Randall, D.: Efficient Generation of Random Nonsingular Matrices. Technical Report UCB/CSD-91-658, EECS Department, UC Berkeley (1991)
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) Theory of Computing, pp. 84–93. ACM (2005)
Reijnders, K., Samardjiska, S., Trimoska, M.: Hardness estimates of the code equivalence problem in the rank metric. Cryptology ePrint Archive, Paper 2022/276 (2022)
Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. Cryptology ePrint Archive, Paper 2006/145 (2006)
Tang, G., Duong, D.H., Joux, A., Plantard, T., Qiao, Y., Susilo, W.: Practical post-quantum signature schemes from isomorphism problems of trilinear forms. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022. LNCS, vol. 13277, pp. 582–612. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07082-2_21
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Chou, T. et al. (2023). Take Your MEDS: Digital Signatures from Matrix Code Equivalence. In: El Mrabet, N., De Feo, L., Duquesne, S. (eds) Progress in Cryptology - AFRICACRYPT 2023. AFRICACRYPT 2023. Lecture Notes in Computer Science, vol 14064. Springer, Cham. https://doi.org/10.1007/978-3-031-37679-5_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-37679-5_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-37678-8
Online ISBN: 978-3-031-37679-5
eBook Packages: Computer ScienceComputer Science (R0)