Abstract
In this paper, we study the problem of allocating concurrent jobs composed of situated tasks, underlying the distributed deployment of the MapReduce design pattern on a cluster. In order to implement our multi-agent strategy which aims at minimising the mean flowtime of jobs, we propose a modular agent architecture that allows the concurrency of negotiation and consumption. Our experiments show that our reallocation strategy, when executed continuously during the consumption process: (1) improves the flowtime; (2) does not penalise the consumption; (3) is robust against execution hazards.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
- 2.
The experiments are reproducible using the following instructions: https://gitlab.univ-lille.fr/maxime.morge/smastaplus/-/tree/master/doc/experiments.
References
Baert, Q., Caron, A.C., Morge, M., Routier, J.C., Stathis, K.: An adaptive multi-agent system for task reallocation in a MapReduce job. J. Parallel Distrib. Comput. 153, 75–88 (2021)
Beauprez, E., Caron, A.C., Morge, M., Routier, J.C.: Task bundle delegation for reducing the flowtime. In: Rocha, A.P., Steels, L., van den Herik, J. (eds.) ICAART 2021. LNCS, vol. 13251, pp. 22–45. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-10161-8_2
Beauprez, E., Morge, M.: Scala implementation of the Extended Multi-agents Situated Task Allocation (2020). https://gitlab.univ-lille.fr/maxime.morge/smastaplus
Chen, Y., Mao, X., Hou, F., Wang, Q., Yang, S.: Combining re-allocating and re-scheduling for dynamic multi-robot task allocation. In: Proceedings of SMC, pp. 395–400 (2016)
Choi, H.L., Brunet, L., How, J.P.: Consensus-based decentralized auctions for robust task allocation. IEEE Trans. Rob. 25(4), 912–926 (2009)
Creech, N., Pacheco, N.C., Miles, S.: Resource allocation in dynamic multiagent systems. CoRR abs/2102.08317 (2021)
Damamme, A., Beynier, A., Chevaleyre, Y., Maudet, N.: The power of swap deals in distributed resource allocation. In: Proceedings of AAMAS, pp. 625–633 (2015)
Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. In: Proceedings of OSDI, pp. 137–150 (2004)
Jiang, Y.: A survey of task allocation and load balancing in distributed systems. IEEE Trans. Parallel Distrib. Syst. 27(2), 585–599 (2016)
Lerman, K., Jones, C., Galstyan, A., Matarić, M.J.: Analysis of dynamic task allocation in multi-robot systems. Int. J. Robot. Res. 25(3), 225–241 (2006)
Lightbend: Akka is the implementation of the actor model on the JVM (2020). http://akka.io
Mayya, S., D’antonio, D.S., Saldaña, D., Kumar, V.: Resilient task allocation in heterogeneous multi-robot systems. IEEE Robot. Autom. Lett. 6(2), 1327–1334 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Beauprez, E., Caron, AC., Morge, M., Routier, JC. (2023). Adaptive Consumption by Continuous Negotiation. In: Mathieu, P., Dignum, F., Novais, P., De la Prieta, F. (eds) Advances in Practical Applications of Agents, Multi-Agent Systems, and Cognitive Mimetics. The PAAMS Collection. PAAMS 2023. Lecture Notes in Computer Science(), vol 13955. Springer, Cham. https://doi.org/10.1007/978-3-031-37616-0_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-37616-0_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-37615-3
Online ISBN: 978-3-031-37616-0
eBook Packages: Computer ScienceComputer Science (R0)