Adaptive Consumption by Continuous Negotiation | SpringerLink
Skip to main content

Abstract

In this paper, we study the problem of allocating concurrent jobs composed of situated tasks, underlying the distributed deployment of the MapReduce design pattern on a cluster. In order to implement our multi-agent strategy which aims at minimising the mean flowtime of jobs, we propose a modular agent architecture that allows the concurrency of negotiation and consumption. Our experiments show that our reallocation strategy, when executed continuously during the consumption process: (1) improves the flowtime; (2) does not penalise the consumption; (3) is robust against execution hazards.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9151
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11439
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://gitlab.univ-lille.fr/maxime.morge/smastaplus/-/tree/worker/doc/specification.

  2. 2.

    The experiments are reproducible using the following instructions: https://gitlab.univ-lille.fr/maxime.morge/smastaplus/-/tree/master/doc/experiments.

References

  1. Baert, Q., Caron, A.C., Morge, M., Routier, J.C., Stathis, K.: An adaptive multi-agent system for task reallocation in a MapReduce job. J. Parallel Distrib. Comput. 153, 75–88 (2021)

    Article  Google Scholar 

  2. Beauprez, E., Caron, A.C., Morge, M., Routier, J.C.: Task bundle delegation for reducing the flowtime. In: Rocha, A.P., Steels, L., van den Herik, J. (eds.) ICAART 2021. LNCS, vol. 13251, pp. 22–45. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-10161-8_2

    Chapter  Google Scholar 

  3. Beauprez, E., Morge, M.: Scala implementation of the Extended Multi-agents Situated Task Allocation (2020). https://gitlab.univ-lille.fr/maxime.morge/smastaplus

  4. Chen, Y., Mao, X., Hou, F., Wang, Q., Yang, S.: Combining re-allocating and re-scheduling for dynamic multi-robot task allocation. In: Proceedings of SMC, pp. 395–400 (2016)

    Google Scholar 

  5. Choi, H.L., Brunet, L., How, J.P.: Consensus-based decentralized auctions for robust task allocation. IEEE Trans. Rob. 25(4), 912–926 (2009)

    Article  Google Scholar 

  6. Creech, N., Pacheco, N.C., Miles, S.: Resource allocation in dynamic multiagent systems. CoRR abs/2102.08317 (2021)

    Google Scholar 

  7. Damamme, A., Beynier, A., Chevaleyre, Y., Maudet, N.: The power of swap deals in distributed resource allocation. In: Proceedings of AAMAS, pp. 625–633 (2015)

    Google Scholar 

  8. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. In: Proceedings of OSDI, pp. 137–150 (2004)

    Google Scholar 

  9. Jiang, Y.: A survey of task allocation and load balancing in distributed systems. IEEE Trans. Parallel Distrib. Syst. 27(2), 585–599 (2016)

    Article  Google Scholar 

  10. Lerman, K., Jones, C., Galstyan, A., Matarić, M.J.: Analysis of dynamic task allocation in multi-robot systems. Int. J. Robot. Res. 25(3), 225–241 (2006)

    Article  Google Scholar 

  11. Lightbend: Akka is the implementation of the actor model on the JVM (2020). http://akka.io

  12. Mayya, S., D’antonio, D.S., Saldaña, D., Kumar, V.: Resilient task allocation in heterogeneous multi-robot systems. IEEE Robot. Autom. Lett. 6(2), 1327–1334 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxime Morge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Beauprez, E., Caron, AC., Morge, M., Routier, JC. (2023). Adaptive Consumption by Continuous Negotiation. In: Mathieu, P., Dignum, F., Novais, P., De la Prieta, F. (eds) Advances in Practical Applications of Agents, Multi-Agent Systems, and Cognitive Mimetics. The PAAMS Collection. PAAMS 2023. Lecture Notes in Computer Science(), vol 13955. Springer, Cham. https://doi.org/10.1007/978-3-031-37616-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37616-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37615-3

  • Online ISBN: 978-3-031-37616-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics