Protein Tetrahedral Networks by Invariant Shape Coordinates | SpringerLink
Skip to main content

Protein Tetrahedral Networks by Invariant Shape Coordinates

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2023 Workshops (ICCSA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14111))

Included in the following conference series:

  • 733 Accesses

Abstract

Representations of large molecules, typically proteins or DNA, for classification purposes, are commonly obtained by molecular networks. These are usually made up by a set of specific atoms (e.g. C\(_\alpha \) atoms in the amino acids) of the molecule plus a neighbourhood criterium, that establishes links between the centers, so building the network. The main objectve of such approaches is the discrimination of structures, the induction of grouping of them, depending on the basis of structural molecular properties. Here we propose applications of invariant shape coordinates as parameters for the construction of enhanced molecular networks for protein classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Perri, D., Simonetti, M., Lombardi, A., Faginas-Lago, N., Gervasi, O.: Binary classification of proteins by a machine learning approach. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12255, pp. 549–558. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58820-5_41

    Chapter  Google Scholar 

  2. Perri, D., Simonetti, M., Lombardi, A., Faginas-Lago, N., Gervasi, O.: A new method for binary classification of proteins with machine learning. In: Gervasi, O., et al. (eds.) ICCSA 2021. LNCS, vol. 12958, pp. 388–397. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87016-4_29

    Chapter  Google Scholar 

  3. Zhao, B., Guo, H.: State-to-state quantum reactive scattering in four-atom systems. WIREs Comput Mol Sci 7, e1301 (2017)

    Google Scholar 

  4. Skouteris, D., Castillo, J., Manolopoulos, D.E.: ABC: a quantum reactive scattering program. Comput. Phys. Comm. 133, 128–135 (2000)

    Google Scholar 

  5. Lepetit, B., Launay, J.M.: Quantum-mechanical study of the reaction He+H\(_{2}^+ \rightarrow \) HeH\(^+\) + H with hyperspherical coordinates. J. Chem. Phys. 95, 5159–5168 (1991)

    Google Scholar 

  6. Aquilanti, V., Beddoni, A., Cavalli, S., Lombardi, A., Littlejohn, R.: Collective hyperspherical coordinates for polyatomic molecules and clusters. Mol. Phys. 98(21), 1763–1770 (2000)

    Google Scholar 

  7. Aquilanti, V., Beddoni, A., Lombardi, A., Littlejohn, R.: Hyperspherical harmonics for polyatomic systems: basis set for kinematic rotations. Int. J. Quantum Chem. 89(4), 277–291 (2002)

    Google Scholar 

  8. Aquilanti, V., Lombardi, A., Littlejohn, R.: Hyperspherical harmonics for polyatomic systems: basis set for collective motions. Theoret. Chem. Acc. 111(2–6), 400–406 (2004)

    Google Scholar 

  9. Kuppermann, A.: Quantum reaction dynamics and hyperspherical harmonics. Isr. J. Chem. 43, 229 (2003)

    Google Scholar 

  10. De Fazio, D., Cavalli, S., Aquilanti, V.: Benchmark quantum mechanical calculations of vibrationally resolved cross sections and rate constants on ab initio potential energy surfaces for the F + HD reaction: comparisons with experiments. J. Phys. Chem. A 120, 5288–5299 (2016)

    Google Scholar 

  11. Aquilanti, V., Cavalli, S.: The quantum-mechanical hamiltonian for tetraatomic systems insymmetric hyperspherical coordinates. 93, 801–809 (1997)

    Google Scholar 

  12. Barreto, P.R.P., Vilela, A.F.A., Lombardi, A., Maciel, G.S., Palazzetti, F., Aquilanti, V.: The hydrogen peroxide-rare gas systems: quantum chemical calculations and hyperspherical harmonic representation of the potential energy surface for atom-floppy molecule interactions. J. Phys. Chemis. A 111(49), 12754–12762 (2007)

    Google Scholar 

  13. Lombardi, A., Laganà, A., Pirani, F., Palazzetti, F., Lago, N.F.: Carbon oxides in gas flows and earth and planetary atmospheres: state-to-state simulations of energy transfer and dissociation reactions. In: Murgante, B., et al. (eds.) ICCSA 2013. LNCS, vol. 7972, pp. 17–31. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39643-4_2

    Chapter  Google Scholar 

  14. Lago, N.F., Albertí, M., Laganà, A., Lombardi, A.: Water (H\(_2\)O)\(_m\) or benzene (C\(_6\)H\(_6\))\(_n\) aggregates to solvate the K\(^+\). In: Murgante, B., et al. (eds.) ICCSA 2013. LNCS, vol. 7971, pp. 1–15. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39637-3_1

    Chapter  Google Scholar 

  15. Faginas-Lago, N., Albertí, M., Costantini, A., Laganá, A., Lombardi, A., Pacifici, L.: An innovative synergistic grid approach to the computational study of protein aggregation mechanisms. J. Mol. Model. 20(7), 2226 (2014)

    Google Scholar 

  16. Faginas-Lago, N., Yeni, D., Huarte, F., Alcamì, M., Martin, F.: Adsorption of hydrogen molecules on carbon nanotubes using quantum chemistry and molecular dynamics. J. Phys. Chem. A 120, 6451–6458 (2016)

    Google Scholar 

  17. Faginas-Lago, N., Lombardi, A., Albertí, M., Grossi, G.: Accurate analytic intermolecular potential for the simulation of Na\(^+\) and K\(^+\) ion hydration in liquid water. J. Mol. Liq. 204, 192–197 (2015)

    Google Scholar 

  18. Albertí, M., Faginas Lago, N.: Competitive solvation of K\(^{+}\) by C\(_6\)H\(_6\) and H\(_2\)O in the K\(^{+}\)-(C\(_6\)h\(_6\))\(_n\)-(H\(_2\)O)\(_m\) (n = 1–4; m = 1–6) aggregates. Eur. Phys. J. D 67, 73 (2013)

    Google Scholar 

  19. Albertí, M., Faginas Lago, N.: Ion size influence on the Ar solvation shells of M\(^+\)-C\(_6\)F\(_6\) clusters (m = Na, K, Rb, Cs). J. Phys. Chem. A 116, 3094–3102 (2012)

    Google Scholar 

  20. Albertí, M., Faginas Lago, N., Pirani, F.: Ar solvation shells in K\(^+\)-HFBz: From cluster rearrangement to solvation dynamics. J. Phys. Chem. A 115, 10871–10879 (2011)

    Google Scholar 

  21. Lago, N.F., Albertí, M., Laganà, A., Lombardi, A., Pacifici, L., Costantini, A.: The molecular stirrer catalytic effect in methane ice formation. In: Murgante, B., et al. (eds.) ICCSA 2014. LNCS, vol. 8579, pp. 585–600. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09144-0_40

    Chapter  Google Scholar 

  22. Faginas-Lago, N., Huarte Larrañaga, F., Albertí, M.: On the suitability of the ILJ function to match different formulations of the electrostatic potential for water-water interactions. Eur. Phys. J. D 55(1), 75 (2009)

    Google Scholar 

  23. Bartolomei, M., Pirani, F., Laganà, A., Lombardi, A.: A full dimensional grid empowered simulation of the CO\(_2\)+ CO\(_2\) processes. J. Comp. Chem. 33, 1806 (2012)

    Google Scholar 

  24. Lombardi, A., Lago, N.F., Laganà, A., Pirani, F., Falcinelli, S.: A bond-bond portable approach to intermolecular interactions: simulations for n-methylacetamide and carbon dioxide dimers. In: Murgante, B., et al. (eds.) ICCSA 2012. LNCS, vol. 7333, pp. 387–400. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31125-3_30

    Chapter  Google Scholar 

  25. Albertí, M., Faginas-Lago, N., Laganà, A., Pirani, F.: A portable intermolecular potential for molecular dynamics studies of NMA-NMA and NMA-H\(_2\)O aggregates. Phys. Chem. Chem. Phys. 13(18), 8422–8432 (2011)

    Google Scholar 

  26. Albertí, M., Faginas-Lago, N., Pirani, F.: Benzene water interaction: From gaseous dimers to solvated aggregates. Chem. Phys. 399, 232 (2012)

    Google Scholar 

  27. Falcinelli, S., et al.: Modeling the intermolecular interactions and characterization of the dynamics of collisional autoionization processes. In: Murgante, B., et al. (eds.) ICCSA 2013. LNCS, vol. 7971, pp. 69–83. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39637-3_6

    Chapter  Google Scholar 

  28. Lombardi, A., Faginas-Lago, N., Pacifici, L., Costantini, A.: Modeling of energy transfer from vibrationally excited CO\(_2\) molecules: Cross sections and probabilities for kinetic modeling of atmospheres, flows, and plasmas. J. Phys. Chem. A 117(45), 11430–11440 (2013)

    Google Scholar 

  29. Lombardi, A., Pirani, F., Laganà, A., Bartolomei, M.: Energy transfer dynamics and kinetics of elementary processes (promoted) by gas-phase CO\(_2\)-N\(_2\) collisions: Selectivity control by the anisotropy of the interaction. J. Comp. Chem. 37, 1463–1475 (2016)

    Google Scholar 

  30. Pacifici, L., Verdicchio, M., Faginas-Lago, N., Lombardi, A., Costantini, A.: A high-level ab initio study of the n2 + n2 reaction channel. J. Comput. Chem. 34(31), 2668–2676 (2013)

    Google Scholar 

  31. Lombardi, A., Faginas-Lago, N., Pacifici, L., Grossi, G.: Energy transfer upon collision of selectively excited CO\(_2\) molecules: State-to-state cross sections and probabilities for modeling of atmospheres and gaseous flows. J. Chem. Phys. 143, 034307 (2015)

    Google Scholar 

  32. Celiberto, R., Armenise, I., Cacciatore, M., Capitelli, M., Esposito, F., Gamallo, P., Janev, R., Lagana, A., Laporta, V., Laricchiuta, A., et al.: Atomic and molecular data for spacecraft re-entry plasmas. Plasma Sources Sci. Technol. 25(3), 033004 (2016)

    Google Scholar 

  33. Faginas-Lago, N., Lombardi, A., Albertí, M.: Aqueous n-methylacetamide: New analytic potentials and a molecular dynamics study. J. Mol. Liq. 224, 792–800 (2016)

    Google Scholar 

  34. Palazzetti, F., Munusamy, E., Lombardi, A., Grossi, G., Aquilanti, V.: Spherical and hyperspherical representation of potential energy surfaces for intermolecular interactions. Int. J. Quantum Chem. 111(2), 318–332 (2011)

    Google Scholar 

  35. Lombardi, A., Palazzetti, F.: A comparison of interatomic potentials for rare gas nanoaggregates. J. Mol. Struct. (Thoechem) 852(1–3), 22–29 (2008)

    Google Scholar 

  36. Barreto, P.R., Albernaz, A.F., Palazzetti, F., Lombardi, A., Grossi, G., Aquilanti, V.: Hyperspherical representation of potential energy surfaces: intermolecular interactions in tetra-atomic and penta-atomic systems. Phys. Scr. 84(2), 028111 (2011)

    Google Scholar 

  37. Barreto, P.R., et al.: Potential energy surfaces for interactions of H\(_2\)O with H\(_2\), N\(_2\) and O\(_2\): a hyperspherical harmonics representation, and a minimal model for the H\(_2\)O-rare-gas-atom systems. Comput. Theor. Chem. 990, 53–61 (2012)

    Google Scholar 

  38. Lombardi, A., Pirani, F., Bartolomei, M., Coletti, C., Laganà, A.: A full dimensional potential energy function and the calculation of the state-specific properties of the CO+ N\(_2\) inelastic processes within an Open Molecular Science Cloud perspective. Front. Chem. 7, 309 (2019)

    Google Scholar 

  39. Faginas Lago, N., Lombardi, A., Vekeman, J., Rosi, M., et al.: Molecular dynamics of CH\(_4\)/N\(_2\) mixtures on a flexible graphene layer: adsorption and selectivity case study. Front. Chem. 7, 386 (2019)

    Google Scholar 

  40. Aquilanti, V., Lombardi, A., Yurtsever, E.: Global view of classical clusters: the hyperspherical approach to structure and dynamics. Phys. Chem. Chem. Phys. 4(20), 5040–5051 (2002)

    Google Scholar 

  41. Sevryuk, M.B., Lombardi, A., Aquilanti, V.: Hyperangular momenta and energy partitions in multidimensional many-particle classical mechanics: The invariance approach to cluster dynamics. Phys. Rev. A 72(3), 033201 (2005)

    MathSciNet  Google Scholar 

  42. Castro Palacio, J., Velazquez Abad, L., Lombardi, A., Aquilanti, V., Rubayo Soneira, J.: Normal and hyperspherical mode analysis of NO-doped Kr crystals upon Rydberg excitation of the impurity. J. Chem. Phys. 126(17), 174701 (2007)

    Google Scholar 

  43. Lombardi, A., Palazzetti, F., Aquilanti, V.: Molecular dynamics of chiral molecules in hyperspherical coordinates. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11624, pp. 413–427. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24311-1_30

    Chapter  Google Scholar 

  44. Lombardi, A., Palazzetti, F., Sevryuk, M.B.: Hyperspherical coordinates and energy partitions for reactive processes and clusters. AIP Conf. Proceed. 2186, 030014 (2019). AIP Publishing LLC (2019)

    Google Scholar 

  45. Lombardi, A., Palazzetti, F.: Chirality in molecular collision dynamics. J. Phys.: Condens. Matter 30(6), 063003 (2018)

    Google Scholar 

  46. Lombardi, A., Palazzetti, F., Peroncelli, L., Grossi, G., Aquilanti, V., Sevryuk, M.: Few-body quantum and many-body classical hyperspherical approaches to reactions and to cluster dynamics. Theoret. Chem. Acc. 117(5–6), 709–721 (2007)

    Google Scholar 

  47. Aquilanti, V., Grossi, G., Lombardi, A., Maciel, G.S., Palazzetti, F.: Aligned molecular collisions and a stereodynamical mechanism for selective chirality. Rend. Fis. Acc. Lincei 22, 125–135 (2011)

    Google Scholar 

  48. Lombardi, A., Faginas-Lago, N., Aquilanti, V.: The invariance approach to structure and dynamics: classical hyperspherical coordinates. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11624, pp. 428–438. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24311-1_31

    Chapter  Google Scholar 

  49. Caglioti, C., Dos Santos, R.F., Lombardi, A., Palazzetti, F., Aquilanti, V.: Screens Displaying Structural Properties of Aminoacids in Polypeptide Chains: Alanine as a Case Study. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11624, pp. 439–449. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24311-1_32

    Chapter  Google Scholar 

  50. Caglioti, C., Ferreira, R.d.S., Palazzetti, F., Lombardi, A., Aquilanti, V.: Screen representation of structural properties of alanine in polypeptide chains. AIP Conf. Proceed. 2186, 030015 (2019). AIP Publishing LLC (2019)

    Google Scholar 

  51. Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. University Press, Cambridge (1990)

    Google Scholar 

  52. Gatti, F., Lung, C.: Vector parametrization of the \(n\)-atom problem in quantum mechanics. i. jacobi vectors. J. Chem. Phys. 108, 8804–8820 (1998)

    Google Scholar 

  53. Aquilanti, V., Lombardi, A., Sevryuk, M.B.: Phase-space invariants for aggregates of particles: hyperangular momenta and partitions of the classical kinetic energy. J. Chem. Phys. 121, 5579 (2004)

    Google Scholar 

  54. Aquilanti, V., Carmona Novillo, E., Garcia, E., Lombardi, A., Sevryuk, M.B., Yurtsever, E.: Invariant energy partitions in chemical reactions and cluster dynamics simulations. Comput. Mat. Sci. 35, 187–191 (2006)

    Google Scholar 

  55. Aquilanti, V., Lombardi, A., Sevryuk, M.B., Yurtsever, E.: Phase-space invariants as indicators of the critical behavior of nanoaggregates. Phys. Rev. Lett. 93, 113402 (2004)

    Google Scholar 

  56. Calvo, F., Gadea, X., Lombardi, A., Aquilanti, V.: Isomerization dynamics and thermodynamics of ionic argon clusters. J. Chem. Phys. 125, 114307 (2006)

    Google Scholar 

  57. Lombardi, A., Aquilanti, V., Yurtsever, E., Sevryuk, M.B.: Specific heats of clusters near a phase transition: Energy partitions among internal modes. Chem. Phys. Lett. 30, 424–428 (2006)

    Google Scholar 

  58. Lombardi, A., Maciel, G.S., Palazzetti, F., Grossi, G., Aquilanti, V.: Alignment and chirality in gaseous flows. J. Vacuum Soc. Japan 53(11), 645–653 (2010)

    Google Scholar 

  59. Palazzetti, F., et al.: Aligned molecules: chirality discrimination in photodissociation and in molecular dynamics. Rendiconti Lincei 24(3), 299–308 (2013)

    Google Scholar 

  60. Littlejohn, R.G., Mitchell, A., Aquilanti, V.: Quantum dynamics of kinematic invariants in tetra-and polyatomic systems. Phys. Chem. Chem. Phys. 1, 1259–1264 (1999)

    Google Scholar 

  61. Lombardi, A.: Symmetry and deformations of cluster and biomolecules by invariant shape coordinates. AIP Conf. Proceed. 2343, 020004 (2021). AIP Publishing LLC (2021)

    Google Scholar 

  62. Andrea, L., Faginas-Lago, N., Pacifici, L.: Protein networks by invariant shape coordinates and deformation indexes. In Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Garau, C., eds.: Computational Science and Its Applications - ICCSA 2022 Workshops. ICCSA 2022. Lecture Notes in Computer Science, vol. 13382, pp. 348–359. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-10592-0_26

  63. Berman, H., et al.: The protein data bank. Nucleic Acid Res. 28, 235–242 (2000)

    Google Scholar 

Download references

Acknowledgments

Thanks are due to the Dipartimento di Chimica, Biologia e Biotecnologie dell’Università di Perugia (FRB, Fondo per la Ricerca di Base 2019 and 2020). A. L. and N. F. L. acknowledge financial support from Fondazione Cassa di Risparmio di Perugia, n.# 19839.2020.0513. A.L. thanks the OU Supercomputing Center for Education & Research (OSCER) at the University of Oklahoma, and the Italian GARR for allocated computing time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lombardi Andrea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Andrea, L., Faginas-Lago, N., Pacifici, L. (2023). Protein Tetrahedral Networks by Invariant Shape Coordinates. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2023 Workshops. ICCSA 2023. Lecture Notes in Computer Science, vol 14111. Springer, Cham. https://doi.org/10.1007/978-3-031-37126-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37126-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37125-7

  • Online ISBN: 978-3-031-37126-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics